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Smartphones are indispensable in people’s daily activities, and smartphone apps tend to be 
increasingly concurrent due to the wide use of multi-core devices and technologies. Due 
to this tendency, developers are increasingly unable to tackle the complexity of concurrent 
apps and to avoid subtle concurrency bugs. To better address this issue, we propose a 
novel approach to detecting concurrency bugs in Android apps based on the fact that 
one can generate simultaneous input events and their schedules for an app, which would 
easily trigger concurrency bugs in an app. We conduct systematic state space exploration 
to find potentially conflicting resource accesses in an Android app. The app is then 
automatically pressure-tested by guided event and schedule generation. We implemented 
our prototype tool named AATT+ and evaluated it with two sets of real-world Android apps. 
Benchmarking using 15 Android apps with previously known concurrency bugs, AATT+ and 
existing concurrency-unaware techniques detected 10 and 1 bugs, respectively. Evaluated 
with another set of 17 popular Android apps, AATT+ detected 11 concurrency bugs and 
7 of them were previously unknown, achieving an over 80% higher detection rate than 
existing concurrency-unaware techniques.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Smartphone and its various apps (i.e., applications) gain popularity rapidly in recent years. By the end of September, 
2017, there had been more than 3.3 million apps in the Google play store [1].

For smooth user experience, smartphone apps should quickly respond to incoming events as well as processing time-
consuming tasks at background [2]. Therefore, concurrency plays an important role in smartphone apps, even though it is 
known to be notoriously difficult to write, test, and debug concurrent programs. Taking Android, one of the most popular 
smartphone platforms, as an example, although it has a set of constraints and mechanisms to make concurrent programming 
simpler (e.g., Android UI updates are constrained in the main thread and time-consuming tasks are forced to background), 
developers are still unable to always correctly understand an app’s concurrent behaviors as the app becomes increasingly 
complicated, and thus leave subtle concurrency bugs in its releases.
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To catch concurrency bugs early in the development, existing work [3–5] finds non-commutative events as “data races” 
to be indicators of concurrency bugs. However, finding such races requires high-quality inputs that trigger racing events to 
be manifested in the execution, at the same time being close enough in time. Furthermore, races may not always lead to 
concurrency bugs and thus filtering out false-positive reports is still an open research problem [3].

Therefore in this work, we focus on taking a different approach to detecting hidden concurrency bugs in an Android 
app by manifesting them during the execution of an app. We observed that in Android app testing, one can generate both 
simultaneous events and their schedules, and manifest potential concurrency bugs with such event-schedule combinations. 
The main advantage of this approach is that it produces only true positives. To realize this idea, there are two challenges: 
(1) how to determine which events are potentially related to concurrency bugs, and (2) how to systematically generate 
events and their schedules to manifest the concerned concurrency bugs.

To address the first challenge, we adapt the app state space exploration mechanism from our previous work Green-
Droid [6], which has a systematic state exploration engine, to conduct dynamic analysis for an Android app, in order to find 
each concurrent task (of classes Listener, Thread, AsyncTask, etc.)’s shared resource access sites (i.e., access points, or APs). 
Following the definition of non-commutative race [5], two concurrent tasks are conflicting if they can access a particular AP 
at the same time and at least one access is a write operation. Conflicting tasks potentially relate to concurrency bugs, and 
we need to right schedule them to trigger such bugs by a guided event-schedule combination generator.

To address the second challenge, we propose a scheduling oriented depth-first search (SO-DFS) algorithm, which inte-
grates both event generation and schedule generation. SO-DFS is based on existing work on state space exploration [7], 
which traverses each transition between distinct app states (defined by an app’s GUI layout) exactly once. We extend it by 
systematically examining all k-combination schedules of concurrency-bug related events and conflicting tasks available at 
the current app state as the exploration goes.

We implemented our approach as a prototype tool named AATT+. Our tool targets Android apps since Android is one 
of the most popular smartphone platforms. We evaluated the effectiveness and efficiency of our tool using two sets of 
real-world Android apps. For the 15 apps with known concurrency bugs from GitHub and Google Code, AATT+ successfully 
detected 10 of the known bugs. For another set of 17 randomly selected apps, AATT+ detected 11 concurrency bugs, 7 of 
which were previously unknown. Detailed evaluation results show that AATT+ achieved an over 80% higher bug detection 
rate than existing concurrency-unaware techniques (e.g., DFS and Monkey/random testing), with reasonable overhead and 
without any false positive.

Summarizing all concurrency bugs studied in our evaluation, we observed a few Android concurrency bug patterns. Echo-
ing a previous empirical study [8], we found that all the concurrency bugs were caused by either atomicity violation or order 
violation. Among these bugs, 10 were caused by Android life-cycle events, which can easily be out of a developer’s consider-
ation. Other common Android-specific concurrency bug causes include incorrectly assumed atomicity (e.g., a developer can 
consider that events of the same type can be triggered at most once a time, and this is equivalent to incorrectly assuming 
the atomicity of an event and its asynchronous tasks), and improper use of Android-provided concurrency mechanisms (e.g., 
a developer can use an Android-provided asynchronous task model to process a shared resource, but does not access the 
resource with the post-process part of the task model, which guarantees to execute when the resource processing finishes, 
and this can break the assumptions about execution orders and lead to concurrency bugs). We hope that our findings can 
make developers aware of such bug patterns and help avoid them in Android app development.

We summarize our contributions in this article as follows:

• We proposed an effective approach to detecting concurrency bugs in Android apps based on the interplay of both event 
and schedule generation, which produces only true positives.

• We implemented our prototype tool named AATT+ and evaluated it using real-world Android apps. AATT+ detected 
previously unknown concurrency bugs and our quantitative analysis shows that our approach is both effective and 
efficient.

• We studied all detected concurrency bugs from our experimental subjects and identified common bug patterns, which 
can benefit both Android developers and researchers.

The work presented in this article is based on our previous work AATT [9], and has significantly extended it. Previously, 
we used a static-dynamic hybrid analysis to determine events potentially relating to concurrency bugs. The static analysis 
constructs partial call graphs of an Android app and identifies APs in the graphs, while the dynamic analysis examines these 
APs in a depth-first fashion. However, this approach can miss some APs due to imprecise call graphs from the static analysis 
and the poor state space exploration ability of the dynamic analysis. In this work, we have extended our approach with a 
GreenDroid-enhanced dynamic analysis [6], which can systematically explore an Android app’s state space to identify APs by 
dynamic analysis. Moreover, in the previous work, we did not concern component life-cycle events of an Android app during 
the guided event-schedule combination generation, and this weakens AATT’s ability of manifesting concurrency bugs. In this 
work, we have extended our approach by adopting heuristic mechanisms to address this issue. Our evaluation demonstrates 
the effectiveness of our extensions. Detailed evaluation results show that AATT+ successfully detected 21 concurrency bugs, 
47.6% more than what AATT detected.

The rest of this article is organized as follows. Section 2 introduces some background knowledge and presents a motivat-
ing example. Sections 3 elaborates on our concurrency bug manifesting approach. Section 4 introduces the implementation 
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of our prototype tool, AATT+. Section 5 experimentally evaluates our AATT+ and analyzes the experimental results. Section 6
presents the lessons we learned and common bug patterns we identified from experimental results. Section 7 reviews the 
related work in recent years, and finally Section 8 concludes this article.

2. Background and motivation

In this section, we introduce some Android background knowledge, and present a motivating example for concurrency 
bug detection.

2.1. Components and event handling of Android apps

Android is one of the most popular smartphone platforms. It provides a common application model for all apps running 
on it, which are typically written in Java and compiled to Dalvik bytecode. The application model mainly contains four types 
of components [10]: (1) an Activity contains a graphical user interface (GUI) and is responsible for interacting with users, 
(2) a Broadcast Receiver is responsible for receiving system-wide messages and responding to them accordingly, (3) a Service
performs time-consuming tasks, and (4) a Content Provider is responsible for managing shared data. These major components 
can also comprise many other sub-components for more complicated program logics, such as Fragment and AsyncTask.

During the execution, an Android app takes sequences of various types of events as input. An event can either be issued 
by a user (e.g., clicking or swiping) or by the Android Runtime system (e.g., connecting to wifi networks). Each app com-
ponent consists of event handlers invoked by the Android system for handling certain types of events. An Android app can 
thus be regarded as a set of loosely-coupled handlers.

In order to handle input events, an Android app can post tasks on different threads. A task is the unit of execution in an 
Android app. It can be a method of an app component such as a Listener, a native Thread, an AsyncTask, etc.

For a set of input events, sending events to an app in different orders forms different event sequences, i.e., the schedules 
of events. For each event sequence, the tasks posted to handle them can be posted and executed in different orders. Such 
orders are schedules of these tasks.

2.2. Android concurrency model

The Android concurrency model provides its own constraints and mechanisms to help developers better utilize multi-
tasking and avoid errors due to non-determinism. First, all GUI and system events are handled in the main thread to avoid 
data races on shared resources. Second, GUI updates are serialized in the main thread in order to eliminate GUI update 
races. Finally, time-consuming tasks (e.g., network accesses) must not run in the main thread and can only be carried 
out by asynchronous tasks, which trigger events at completion, such that the main thread can quickly respond to user 
and system events. Developers usually use built-in asynchronous tasks to manage concurrency, including AsyncTask and
Loader [11].

Moreover, tasks can post new tasks to different threads during the execution. Therefore, such situation can occur where 
a task running at background posts a task to the main thread or the other way around. This concurrent mechanism brings 
convenience to developers. However, it also complicates the concurrent execution of Android apps and could result in many 
concurrency bugs.

2.3. Motivating example

The Android concurrency model helps improve apps’ performance. However, as apps are becoming increasingly compli-
cated, more and more developers tend to create complicated cascading tasks that have non-deterministic outcomes [4,5], as 
well as to mix native threads (e.g., Thread and Threadpool objects) in the execution. Such complication can easily lead 
to concurrency bugs. Moreover, the Android platform is a complicated system and many developers could misunderstand 
many of its concurrency mechanisms, and this also brings subtle concurrency bugs, which are difficult to detect with a 
limited testing budget.

Fig. 1 gives an example of concurrency bug in GigaGet, a lightweight multi-threaded file downloader, while Fig. 2 presents 
the simplified code snippet. The code seems to work at a first glance, as Fig. 1(a) presents: the item represents a down-
loaded file (the orange square on the screen). When the item object is clicked, its associated OnClickListener object’s
onClick method (Lines 3–21) is invoked. Then a PopupMenu object (popup) is created (Lines 4–5) and its MenuItem
object (del, which represents the Delete menu item on the screen) is set visible (Lines 6–8). When creating the popup
menu, the Android system will disable the item object’s associated OnClickListener object. Then an OnMenuItem-
ClickListener object is associated with the popup menu (Lines 10–19). If the del menu item is selected, the item
object and the file it represents will be deleted by invoking the corresponding deleteItem method (Lines 13–16).

However, as Fig. 1(b) shows, if the app’s user clicks the item object twice quickly before the popup menu is created, 
two identical popup menus will be created and both of them are functional. Selecting the del menu item on both popup
menus would lead to double invocation of the deleteItem method (Lines 13–16) and delete the item object and the file 
it represents twice. This abnormal practice then crashes the app.
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Fig. 1. Work flow in the motivating example to trigger the concurrency bug. (For interpretation of the colors in the figure(s), the reader is referred to the 
web version of this article.)

1 item.setOnClockListener(new View.OnClickListener() {
2 @Override
3 public void onClick(View v) {
4 PopupMenu popup = new PopupMenu(context, item);
5 popup.inflate(R.menu.mission);
6 Menu menu = popup.getMenu();
7 MenuItem del = menu.findItem(R.id.del);
8 del.setVisible(true);
9
10 popup.setOnMenuItemClickListener(new PopupMenu.OnMenuItemClickListener() {
11 @Override
12 public boolean onMenuItemClick(MenuItem item) {
13 if (item.getItemId() == R.id.del) {
14 manager.deleteItem(downloadItem.pos);
15 return true;
16 }
17 return false;
18 }
19 });
20 popup.show();
21 }
22 });

Fig. 2. Motivating example from app GigaGet’s code.

This example demonstrates a subtle atomicity violation bug due to an event schedule out of developers’ consideration. 
GigaGet developers incorrectly assumed that if the item object is clicked, the follow-up action sequence (i.e., disabling 
the click event on the item object and creating the popup menu) will be carried out atomically. Such assumption can 
be easily made for sequential code. However, a concurrent system allows inserting another click event, and this breaks the 
assumption.

As the example shows, both a specific event sequence and a specific event-task schedule are required to manifest this 
concurrency bug. The required event sequence is two click events on the item object and one click event on each del
menu item, and the specific schedule is that the onClick task, which handles the second click event, must be posted and 
executed before the popup menu’s show task is posted and executed. Unfortunately, existing predictive trace analysis tech-
niques [3–5] have difficulties in detecting this bug, unless the input event sequences for testing already contain consecutive 
file-deletion events. Moreover, even if these techniques do detect the bug with such events, they can also produce many false 
positives, which is difficult to filter out. Random testing (e.g., Monkey), on the other hand, may have a chance to detect this 
bug. However, it has a very low probability to generate such an appropriate event sequence and has no bug manifestation 
guarantee.

This motivates us to design our approach to proactively detecting concurrency bugs in Android apps. As demonstrated, 
while existing work focuses on either event generation [12] or schedule generation [13], it is insufficient to expose many 
hidden concurrency bugs. We aim to leverage the interplay of both event and schedule generation at runtime to automati-
cally generate combinations of conflicting events and suspicious schedules, so as to manifest concurrency bugs in Android 
apps. Such approach guarantees to detect the concurrency bug in our motivating example and produces only true positives.
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3. Effectively manifesting concurrency bugs

In this section we elaborate on our approach to detecting concurrency bugs in Android apps. Notations and definitions 
are presented in Section 3.1, an approach overview is presented in Section 3.2, technical details are presented in Sections 3.3
and 3.4, and a discussion about the improvement from our previous work AATT is presented in Section 3.5.

3.1. Preliminaries

We use P to denote the Android app under test. We start by formally defining event and task.

Definition 1 (Event). An event e is what an Android app takes as input and responds to. An app receives events and executes 
its corresponding code to handle these events. We use E to denote the set of all possible events for the app under test P .

Sometimes, an Android app will not respond to an event until it receives another certain event first. We define such 
pre-required events as enabling events.

Definition 2 (Enabling events). An event e′ is another event e’s enabling event if the app P does not respond to e until it 
receives e′ first.

When receiving input events, Android apps post tasks to handle these events.

Definition 3 (Task). A task t is what an Android app posts on different threads to handle input events. It represents a method 
of an app component such as a Listener, a native Thread, etc. An event e triggers a task if the task is posted to handle 
this event. We use T r(t) to denote events triggering t .

When handling an event sequence, tasks are posted on different threads and can have different execution orders. We 
define the schedule of tasks based on this observation.

Definition 4 (Schedule of tasks). For an event sequence seq, a schedule of tasks sch = [(t1, th1), (t2, th2), ..., (tn, thn)], where 
ti ∈ T is a task executed on thread thi , is a possible posting and execution order of tasks handling seq. For a certain seq, 
there can be multiple possible schedules. We denote all possible schedules of tasks of P for seq as SC H(seq, P ).

During the execution of a task, it can access shared resources. We define access point (AP for abbreviation) based on this 
observation.

Definition 5 (Access point). An Access Point A P is a program point of a task t where t accesses a resource shared by other 
tasks, and t is the A P ’s belonged task.

Note that an AP can be either a read operation (i.e., a read AP) or a write operation (i.e., a write AP). We follow the 
definition of non-commutative race [5] and define conflicting APs and tasks.

Definition 6 (Conflicting APs and tasks). Two APs A P1 and A P2 are conflicting if they can access the same resource and at 
least one of them is a write AP. Their belonged tasks t1 and t2, where A P1 ∈ t1 and A P2 ∈ t2, are considered conflicting and 
non-commutative. We use C O N F (seq) to denote all conflicting task pairs triggered by an event sequence seq.

Particular schedules of such conflicting tasks and their triggering events can manifest most concurrency bugs [3–5]. 
Therefore, we focus on finding such tasks and events, and generating all possible schedules for them.

3.2. Overview

Our approach aims to detect potential concurrency bugs in Android apps by manifesting these bugs during the execution 
of an app. Note that we only detect concurrency bugs within apps and not across apps. As shown in Section 2.3, concurrency 
bugs are caused by abnormal schedules of both conflicting tasks and events these tasks handle. Therefore, the two key 
factors of manifesting a concurrency bug in an Android app are: (1) identifying events potentially relating to concurrency 
bugs and conflicting tasks triggered by these events, and (2) enumerating all possible schedules of such events and tasks. In 
order to address these two key factors, we adopt a two-phase approach that works as follows:

1. A pre-processing phase that identifies conflicting tasks and concurrency-bug related events. This is achieved by a sys-
tematic dynamic analysis guided by GreenDroid [6].

2. A manifestation phase that proactively generates potentially concurrency-bug related events, and enumerates all possible 
schedules of both these events and conflicting tasks triggered by them, during a depth-first GUI model exploration.
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Fig. 3. Work flow of the pre-processing phase.

For the pre-processing phase, we adapt GreenDroid [6], a powerful Android app state space exploration engine originally 
designed for detecting energy inefficiency bugs of Android apps, to guide the dynamic analysis in order to identify conflicting 
tasks and concurrency-bug related events. GreenDroid systematically executes an Android app in a virtual environment to 
explore each event handler’s behavior, which fits well the task of finding conflicting tasks. We will address more of this 
phase in Section 3.3.

We then use the information about events and conflicting tasks obtained in the pre-processing phase to guide the 
manifestation phase. We conduct a depth-first exploration on an Android app’s GUI model. During the exploration, we 
generate k simultaneous events potentially relating to concurrency bugs at each state, and schedule both these events and 
the conflicting tasks posted to handle them. We address more of this phase in Section 3.4.

Our approach works as follows for the motivating example from GigaGet. In the pre-processing phase, GreenDroid 
guides the dynamic analysis to systematically explore the state space of GigaGet. During the exploration, it notices that 
the deleteItem task accesses shared resources (i.e., the item object and the file it represents) and conflicts with itself. 
Its belonged task is the onMenuItemClick task, which is enabled by the onClick task. Therefore, we record these tasks 
and the input events these tasks handle. Then in the manifestation phase, a depth-first exploration is conducted. When it 
arrives at the state where the item object’s click event is enabled, it enumerates all possible schedules of two click events 
on the item object and one click event on each del menu item, as well as the tasks posted to handle these events. When 
it schedules two click events on the item object before the show task of the popup menu is posted and executed, and 
then schedules one click event on each del menu item, it successfully manifests the concurrency bug.

3.3. Dynamic access point analysis

To manifest concurrency bugs in our manifestation phase, we need to generate potentially concurrency-bug related 
events, and schedule these events as well as conflicting tasks posted to handle them. Therefore, our goals in the pre-
precessing phase are to: (1) obtain all APs {A P1, A P2, .., A Pn} and determine if any of them are conflicting with others, 
(2) obtain conflicting tasks {t1, t2, .., tm} where A Pi ∈ ti for each A Pi conflicting with others, and (3) obtain concurrency-
bug related events {T r(t1), T r(t2), ..., T r(tm)}, which can trigger these conflicting tasks.

Fig. 3 presents the work flow of the pre-processing phase. As described in Section 3.2, in order to obtain the above 
information, we conduct a GreenDroid-enhanced dynamic analysis on the app under test. GreenDroid is originally designed 
for detecting energy inefficiency bugs in Android apps, and is able to systematically execute an Android app. It statically 
analyzes an Android app’s configuration files to collect events acceptable by each app component (e.g., an Activity). Then 
during the state space exploration, it exhaustively enumerates all possible events acceptable by current active components 
at each state. In this manner, GreenDroid generates all possible event sequences,1 and systematically explores the state 
space of an Android app.

After GreenDroid provides event sequences, we use these sequences to guide our dynamic analysis. We execute the 
Android app under test on a real Android device with these event sequences as inputs. During the execution, the Android 
device records execution traces of method invocations and field accesses, which relate to task posting and shared resource 
accesses, respectively. We then parse the execution traces to collect information about events, tasks, and APs, and determine 
if any task is conflicting with others, and if any event has enabling events. We record their information for our analysis in 
the manifestation phase.

1 Since an event sequence of an Android app can be infinitely long, GreenDroid sets up a length limit l and generates all possible event sequences no 
longer than l. This is sufficient since all reachable handlers can be reached with a reasonably large l.
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Note that we regard all tasks with write APs conflicting with themselves and record their information. This is because 
that app users can send the same event to the app twice, and an abnormal schedule of two same tasks handling these 
events can indeed lead to concurrency bugs. Our motivating example from GigaGet is one example.

3.4. Automated testing with guided event generation

With all the information obtained in the pre-processing phase, we attempt to manifest concurrency bugs in our man-
ifestation phase. Our algorithm of the manifestation phase is a scheduling oriented DFS (SO-DFS). As Algorithm 1 and 
Algorithm 2 show, the whole algorithm consists of two parts: a depth-first state-space exploration (i.e., state space explo-

Algorithm 1: State space exploration.

1 S ← ∅ // explored states
2 Function SO-DFS(s, π )

// s is the current state
// π is the event sequence required to reach s

3 S ← S ∪ {s}
4 E ← getEvents(s)

// generate event-schedule combinations at s
5 generateSchedules(E, s, π )
6 for each event e ∈ E do
7 sendEvent(e)
8 s′ ← getCurrentState()
9 if s′ /∈ S then

// "::" denotes list concatenation
10 SO-DFS(s′, π :: 〈e〉)

11 if s 
= s′ then
12 RESTORE(s, π )

Algorithm 2: Event-schedule combination generation.

1 k: maximum number of events scheduled each time
2 Function generateSchedules(E, s, π )
3 E ← E ∪ E2 ∪ ... ∪ Ek

4 for each es ∈ E do
5 if triggerConflictingTasks(es) then
6 Seq ← ∅

// check if each event has an enabling event
7 for each e ∈ es do
8 if e has an enabling event e′ then
9 Seq ← Seq ∪ [e′, e]

10 else
11 Seq ← Seq ∪ [e]

// obtain all event sequences
12 E SC ← generateEventSchedules(Seq)
13 for each esc ∈ E SC do
14 generateTaskSchedules(esc, s, π )

15 Function generateTaskSchedules(esc, s, π )
16 for each 〈t1, t2〉 ∈ C O N F (esc) executed in different threads do
17 C A ← obtainConflictingAPPairs(t1, t2)
18 for each AP pair 〈A P1, A P2〉 ∈ C A do

// unblock A P1 first
19 executeSchedule(esc, t1, A P1, t2, A P2)
20 RESTORE(s, π )

// unblock A P2 first
21 executeSchedule(esc, t2, A P2, t1, A P1)
22 RESTORE(s, π )

23 Function executeSchedule(esc, t1, A P1, t2, A P2)
24 〈b1, b2〉 ← sendEventAndBlock(esc, t1, A P1, t2, A P2)
25 unblock(b1)
26 unblock(b2)
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Fig. 4. Work flow of SO-DFS.

ration) and a pressure testing where we generate schedules for concurrency-bug related events and conflicting tasks (i.e., 
event-schedule combination generation). Fig. 4 presents the work flow of our SO-DFS.

The state space exploration part resembles the standard DFS algorithm [14]. We automatically run an Android app in a 
depth-first fashion based on a GUI state model where states of an Android app are defined as its GUI layouts. Algorithm 1
presents the recursive exploration procedure. When calling SO-DFS with a state s and an event sequence π (Line 2), which 
represent the current app state and the event sequence used to reach this state, respectively, we first obtain all events 
acceptable to the app at s (Line 4), and try to manifest concurrency bugs with them (Line 5), as presented in Algorithm 2. 
After the manifestation finishes, we systematically send all events acceptable by the app at state s as input, attempting 
to explore more app states (Lines 6–12). We recursively call SO-DFS if the result state s′ has not been explored yet 
(Lines 9–10). We restore state s after each state exploration attempt (Lines 11–12).

During the state space exploration, we generate schedules for concurrency-bug related events and conflicting tasks at 
each app state. Algorithm 2 presents the detailed event-schedule combination generation procedure. Each time, we generate 
schedules of at most k events that trigger conflicting tasks (Lines 4–14). Note that we allow events to be selected repetitively 
each time since repetitive events can trigger tasks conflicting with themselves, and thus can also lead to concurrency bugs. 
Moreover, we take life-cycle events of app components into consideration. In order to manage resources, the Android system 
provides various life-cycle events for app components. Such events can change states of these components, and affect tasks 
associated with these components. We include these events into each es ∈ E to further manifest potential concurrency 
bugs.

For each event e, we first determine whether it has an enabling event e′ (Lines 7–8). If so, we add e′ in front of e and 
maintain such order during the schedule generation process (Line 9). We then generate schedules for both these events 
and conflicting tasks triggered by them. We first combine all events in Seq, and generate all possible event sequences (i.e., 
event schedules) E SC (Line 12). For each esc ∈ E SC , we then generate schedules for conflicting tasks triggered by esc via
generateTaskSchedules (Lines 15–22).

In generateTaskSchedules, we generate schedules for each conflicting AP pair in each task pair (Lines 16–22). For 
each pair of conflicting APs 〈A P1, A P2〉 in each conflicting task pair 〈t1, t2〉 executed in different threads, where A P1 ∈ t1
and A P2 ∈ t2, we send the event sequence esc to the app and block threads executing t1 and t2 at the points before they 
execute A P1 and A P2 (Line 24). We unblock A P1 first, and then unblock A P2 (Lines 19, 25 and 26). We then restore the 
app to the state where esc has not been sent (Line 20), send esc to the app again, and block the threads before A P1 and 
A P2 are executed (Line 24). This time we unblock A P2 first, and then unblock A P1 (Lines 21, 25 and 26), yielding a different 
execution order. As such, we generate different schedules of each conflicting AP pair. By scheduling each pair of conflicting 
APs in each pair of conflicting tasks executed in different threads, we enumerate all possible schedules for conflicting tasks 
triggered by each esc.

3.5. Discussions

We made several improvement efforts from our previous work AATT for both analysis phases.
For the pre-processing phase, our previous work AATT relies on both static and dynamic analyses. Static analysis obtains 

static data/control-flow information to build call graphs of all tasks of an Android app in order to determine if any of 
them are conflicting with others. However, an Android app’s data/control-flow often travels out of the app and into the 
Android framework, and this makes it difficult to build precise and complete call graphs of the app. This lack of precision 
and completion can lead to both false negatives and false positives in identifying conflicting APs. Dynamic analysis, on the 
other hand, provides the precise information of execution of an Android app. In our previous work AATT, we run an Android 
app with existing event generation techniques that are not originally designed for detecting concurrency bugs in Android 
apps, which cannot reach high coverage of tasks, since many of them only focus on events with certain features [12,15,
16]. In order to overcome these disadvantages, we adopt GreenDroid to guide our dynamic analysis. Moreover, we obtain 
information about enabling events, while AATT does not consider such events.
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Fig. 5. Architecture of implementation.

For the manifestation phase, we take life-cycle events into consideration when generating event-schedule combinations. 
Life-cycle events can affect the execution of tasks even though their triggering tasks have no explicit conflicting APs. While 
our previous work AATT does not consider these events, we add them to each event schedule to better manifest concurrency 
bugs in AATT+.

4. Implementation

We implemented our prototype tool AATT+2 whose architecture is presented in Fig. 5. The Anomaly analyzer
component and the Instrumentor component together comprise the pre-processing phase of our approach, while the
Executor component is implemented as the manifestation phase of our approach. The Anomaly analyzer component 
integrates the E-GreenDroid component and the Dynamic profiling component. It takes an Android app’s apk file 
as input, and returns a set of execution traces of the app as output, which contains information about events, tasks and 
APs. The E-GreenDroid component generates various event sequences of the app under test. The Dynamic profil-
ing component uses these event sequences to systematically explore the state space of the app under test, while its Trace 
collector collects traces of the execution. Then the Instrumentor component takes the execution traces as input. It 
parses the traces to identify conflicting APs and tasks, infers enabling and concurrency-bug related events, and modifies the 
apk file accordingly in order to allow the Executor component to perform SO-DFS. Finally, the Executor component 
automatically runs the app under the control strategy described in Section 3.4 using the modified apk file to manifest con-
currency bugs. It generates an analysis report about the manifestation process. The report provides the event traces used to 
reach each state and the event-schedule combinations generated at each state. If the app crashes during the manifestation, 
the report further provides information about the crash, such as stack information.

We use E-GreenDroid [6] to provide event sequences for the app under test. E-GreenDroid is an updated version 
from the original GreenDroid on both methodology and implementation, which can analyze apps of API Level 21 or earlier.
E-GreenDroid produces desired event sequences to be sent to the Dynamic profiling component. One limitation of
E-GreenDroid is that it does not support concurrency. For asynchronous tasks, E-GreenDroid simply ignores them. In 
order for E-GreenDroid to explore asynchronous tasks, for current implementation we modify it to execute these tasks 
synchronically. When an asynchronous task is posted, instead of ignoring it, our modified E-GreenDroid executes this 
task in the main thread. This modification is temporary for our current implementation, and although it might introduce 
atomicity violations, we have not encountered such situations in our experiments. We plan to extend E-GreenDroid in 
future to fully support concurrency.

The Dynamic profiling component consists of two sub-components, a controller Uiautomator and a Modified 
Android device. The Uiautomator takes the event sequences from E-GreenDroid and uses them to guide the exe-
cution of the app under test on the Modified Android device. The Modified Android device is a real Android 
Device with a Trace collector. It executes the app under the guidance of the Uiautomator. During the execution, 
the Trace collector records the execution traces, which will be used by the Instrumentor component. The Trace 
collector is implemented by modifying the interpreter of ART [17] to collect execution traces. The traces contain follow-
ing information: (1) memory access information from field read/write operations, and (2) method entry and exit operations. 
When the execution finishes, these traces are sent to the Instrumentor component.

The Instrumentor component is responsible for parsing execution traces to identify conflicting APs, conflicting tasks, 
and concurrency-bug related or enabling events. It uses the method entry and exit information to determine the caller and 
the callee of each method invocation, and thus determines who posts each task. Moreover, the Instrumentor component 
parses the memory access information to find APs of each task. Particularly, we focus on APs accessing shared memories, 
databases, and file systems. By comparing each pair of APs, it can determine which pairs of APs or tasks are conflicting with 
each other. For each task, if it contains any AP conflicting with that in another task, we record this task, its conflicting APs, 
the event triggering it, and the enabling event of the triggering event.

2 The prototype tool can be downloaded at https://github .com /skull591 /AATT.

https://github.com/skull591/AATT
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Moreover, in order to allow the Executor component to properly schedule conflicting tasks, the Instrumentor
component inserts extra control statements into the apk file. Recall that in order to properly schedule tasks and APs, we 
block certain threads, and unblock them in all possible orders. In order to block/unblock threads, the Instrumentor
component inserts semaphore operations at the beginning of each conflicting task and before each conflicting AP. Moreover, 
it inserts an extra Java class into the apk file, which is responsible for controlling the inserted semaphores. As such, our
Controller of the Executor component can control schedules of conflicting tasks.

The Executor component, which is built on top of our previous testing framework ATT [18], first re-signs the instru-
mented apk file and implants a service Troyd in it. Troyd [19] runs in the same process as the app under test and collects 
the app’s runtime information under given commands. The Executor component then installs the re-signed apk file on 
a real Android device. The Controller of the Executor component runs on a computer to guide the execution of the 
app with SO-DFS. It guides the execution to traverse the app’s state space. As described in Section 3.4, we define the 
current state of a running app as its current GUI layout, whose hash value is calculated with the coordinates, sizes and 
types of the layout’s widgets. At each state, the Controller uses information obtained by the Instrumentor compo-
nent to generate suspicious event-schedule combinations to manifest concurrency bugs. For our current implementation, 
we set k = 2 for event-schedule combination generation. For event schedule generation, the Controller forms different 
event sequences and sends them to the app. For task schedule generation, the Controller interacts with the inserted 
Java class to take semaphore operations. It takes P operations on inserted semaphores to block threads and takes V oper-
ations to unblock them. During the manifestation phase, the Executor records event sequences used in state traversing 
and event-schedule combination generation, and puts them into the output report. If the app under test crashes during the 
execution, the Executor gathers relevant information such as stack backtrack, and puts the information into the report as 
well.

Some app states require designated inputs (e.g., a user name and password combination) to reach. Automatically gener-
ating such inputs is still an open research problem [20]. Therefore, we prepare each app with necessary inputs and when 
such a situation occurs, the Controller will automatically feed it with meaningful inputs.

5. Evaluation

We experimentally evaluated our tool by applying it to real-world Android apps. We focused on the effectiveness and 
efficiency of AATT+. Moreover, we investigated the effectiveness of our extension from AATT to AATT+. In summary, we 
aimed to investigate following research questions:

• RQ1 (Effectiveness): Can AATT+ manifest concurrency bugs more effectively than existing techniques?
• RQ2 (Efficiency): Does AATT+ consume a reasonable amount of time when conducting analysis?
• RQ3 (Improvement): How is AATT+ improved from AATT?

For RQ1 and RQ2, we compared our AATT+ with: (1) the industrial standard random testing tool Monkey [21], and (2) 
an enhanced model-based depth-first search (DFS) [14] that sends each event twice quickly in order to better manifest 
concurrency bugs.

For RQ3, we compared the effectiveness and efficiency of AATT+ with our previous work AATT to evaluate our extension.
Note that for AATT+, AATT, Monkey, and DFS, they detect concurrency bugs by manifesting them during the execution 

of an app, while techniques utilizing Predictive Trace Analysis (PTA) [3,4] detect concurrency bugs by analyzing execution 
traces. To distinguish such difference, in this section we use the term manifest for AATT+, AATT, Monkey, and DFS, and the 
term detect for techniques utilizing PTA.

5.1. Experimental setup

We evaluated our AATT+ using two sets of real-world Android apps: one with apps that have previously known con-
currency bugs, and one with randomly selected popular apps utilizing concurrency. Table 1 shows details of these test 
subjects.

Table 1(a) shows the first set of test subjects, which have known concurrency bugs. This set contains 15 real-world 
Android apps, which are: (1) popular, large-scale apps with confirmed concurrency-bug related issues or with commits that 
fix concurrency bugs, or (2) faulty versions of buggy test subjects used by existing work [3,4]. We refer to this set of test 
subjects as the Knowns.

Table 1(b) shows the second set of test subjects. It contains 17 randomly selected popular real-world Android apps with 
concurrency from GitHub, Google Code, and EOEAndroid. We refer to this set of test subjects as the Randoms.

The research questions were investigated using all these 32 apps, which cover 12 app categories and have an average 
of over 18,000 lines of code. For subjects in the Knowns (apps with ground-truth bugs), the effectiveness was reflected by 
whether a technique could manifest the known concurrency bugs. For subjects in the Randoms (randomly selected apps), 
we investigated the concurrency bugs reported by each technique to determine whether they were real concurrency bugs. 
Previously unknown bugs were reported to the developers of buggy apps for confirmation.
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Table 1
Test subjects of our evaluation.

App Availability LoC Category

(a) Test subjects of Knowns
vlillechecker Github 5,330 Travel & Local
AnyMemo GitHub 29,871 Education
OIFileManager GitHub 3,484 Productivity
Tomdroid GitHub 12,233 Productivity
SunShine GitHub 26,472 Weather
MyTrack Google Code 43,372 Communication
ChatSecure GitHub 68,681 Communication
Feedex GitHub 10,151 News & Magazines
sgtpuzzles GitHub 5,780 Games
K-9 Mail GitHub 95,098 Communication
todowidget GitHub 689 Productivity
AAT GitHub 43,725 Travel & Local
Douya GitHub 34,357 Social
weiciyuan GitHub 78,936 Social
FBReader GitHub 16,578 Books & References

(b) Test subjects of Randoms
2buntu GitHub 963 News & Magazines
aarddict GitHub 2,077 Books & Reference
aNarXiv GitHub 3,357 Books & Reference
andiodine GitHub 1,502 Tools
Down EOEAndroid 2,045 Tools
DroidWeight Google Code 5,078 Health & Fitness
exeternalIP GitHub 2,416 Tools
falling blocks Google Code 1,763 Games
GigaGet GitHub 3,123 Tools
HostIsDown GitHub 631 Tools
KindMind GitHub 5,510 Lifestyle
LilyDroid Google Code 10,471 Social
MultiPing GitHub 547 Tools
ConnectBot GitHub 26,567 Tools
CoolClock GitHub 3655 Personalization
Simple Draw GitHub 12,190 Tools
AnkiDroid GitHub 23,769 Education

For each test subject, AATT+, AATT and the enhanced DFS ran until completion, i.e. all reachable transitions were explored 
at least once. To raise the Monkey’s probability of manifesting concurrency bugs, we provided Monkey twice as much time 
as AATT+ took for each test subject.

All experiments were conducted on a machine with Intel Core i5-4200U CPU and 4 GB RAM running Ubuntu 16.04 LTS. 
Apps were tested on a Google Nexus 5 with Android 6.0.

5.2. Experimental results

Our evaluation results are presented in Table 2. For each test subject, we present the analysis result of each technique, 
along with the execution time each technique took to conduct analysis. We answer the research questions based on these 
results.

5.2.1. RQ1: effectiveness
We can answer RQ1 by comparing the analysis results of AATT+, enhanced DFS and Monkey. For all 32 test subjects, 

AATT+ reported that 21 subjects had concurrency bugs leading to app crashes or malfunctions. For subjects of the Knowns, 
AATT+ reported that 10 out of 15 apps had potential concurrency bugs. We inspected the reports of AATT+ and confirmed 
that they all matched the ground truth. Five known concurrency bugs were not manifested by AATT+, two of which were 
reported by existing work utilizing PTA [3,4]. We will discuss these un-manifested bugs in Section 5.4. For test subjects 
of the Randoms, AATT+ reported that 11 out of 17 apps had concurrency bugs. We carefully examined these apps. All 
manifested bugs were real bugs concerning concurrency. Since we did not have the ground truth for these bugs, we searched 
repositories and issue tracking systems of these problematic apps to determine whether the bugs were previously unknown. 
We found that 7/11 of the bugs were previously unknown. We submitted bug reports to app developers for active projects. 
The developers confirmed two of the bugs [22,23], and labeled the issue we posted for the bug in andiodine as bug [24], 
although they have not manifested the bug themselves yet.

For Monkey, it manifested only one bug for each set of test subjects (in Down and todowidget), which were also mani-
fested by AATT+. For enhanced DFS, it manifested only one concurrency bug (in GigaGet of the Randoms), which our AATT+ 
manifested as well. Note that it cannot manifest any concurrency bug without our enhancement.
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Table 2
Manifestation results.

App AATT+ DFS Monkey AATT

Timea Bug Time Bug Time Bug Time Bug

(a) Manifestation results for Knowns
vlilleChecker 1,425 yes 2,835 – 2,850 – 1,524 yes
AnyMemo 872 yes 758 – 1,744 – 1,538 –
OIFileManager 980 yes 2,258 – 1,960 – 870 –
SunShine 2,375 – 2,036 – 4,750 – 2,499 –
Tomdroid 635 yes 1,926 – 1,270 – 561 yes
MyTrack 456 yes 778 – 912 – 1,327 –
ChatSecure 1,358 yes 2,996 – 2,716 – 1,784 –
Feedex 1,028 yes 3,768 – 2,056 – 1,976 –
sgtpuzzles 1,256 – 947 – 2,512 – 1,114 –
k-9 Mail 1,263 yes 1,274 – 2,516 – 1,756 –
todowidgit 685 yes 568 – 1,370 yes 1,563 –
AAT 1,768 – 1,528 – 3,536 – 1,267 –
Douya 1,029 – 1,128 – 2,058 – 923 –
weiciyuan 637 – 537 – 1,274 – 588 –
FBReader 858 yes 1,433 – 1,716 – 1,567 –

(b) Manifestation results for Randoms
2buntu 1,876 – 875 – 3,752 – 1,416 –
aarddict 275 yes 1,252 – 550 – 158 yes
aNarXiv 376 yes 956 – 752 – 203 yes
andiodine 2,450 yes 2,258 – 4,900 – 2,247 yes
Down 98 yes 281 – 26 yes 82 yes
DroidWeight 6,247 – 2,320 – 12,494 – 6,235 –
externalId 450 – 223 – 900 – 449 –
falling blocks 226 yes 158 – 452 – 215 yes
GigaGet 643 yes 271 yes 1,286 – 655 yes
HostIsDown 237 yes 819 – 474 – 231 yes
KindMind 2,679 – 1,478 – 5,358 – 2,640 –
LilyDroid 1,023 yes 11,909 – 2,046 – 795 yes
MultiPing 425 yes 440 – 850 – 375 yes
ConnectBot 875 yes 1,253 – 1,750 – 1,019 –
CoolClock 334 – 235 – 668 – 310 –
Simple Draw 612 – 552 – 1,224 – 483 –
AnkiDroid 486 yes 789 – 972 – 671 –

a Column Time presents the consumed time when it hits the first bug, or presents all time that they need if the target app does not crash.

These results demonstrate that AATT+ is promising in manifesting concurrency bugs, which are difficult to manifest by 
conventional techniques. Though Monkey can manifest any bug in theory, the evaluation shows that our approach is much 
more effective, especially when the resources are limited. Therefore, we can answer RQ1 that AATT+ can effectively manifest 
concurrency bugs, comparing with existing techniques.

5.2.2. RQ2: efficiency
In order to answer RQ2, we compared the execution time of AATT+, enhanced DFS and Monkey, which is presented in 

Column Time of Table 2.
For all buggy test subjects except andiodine, AATT+ manifested the bugs within 1,500 seconds. If no bug was manifested, 

AATT+ spent slightly more time than enhanced DFS did.
Enhanced DFS manifested the bug in GigaGet with slightly less time than AATT+ did. It also took less time to conduct 

analysis than AATT+ did if no bug was manifested except for Douya. This is because that it merely traverses the states of 
test subjects without generating event-schedule combinations at each state. Moreover, Monkey consumed twice as much 
time as AATT+ did with much less productive results.

The comparison demonstrates that AATT+ can manifest concurrency bugs with little overhead comparing with existing 
techniques, and this suggests its efficiency.

5.2.3. RQ3: improvement
To answer RQ3, we further used AATT to analyze our test subjects. The results are also presented in Table 2. AATT were 

originally tested by a subset of test subjects of the Randoms, therefore we compared the results as regression testing to 
determine whether our extension preserves the effectiveness of AATT. As Table 2(b) shows, AATT+ manifested all the bugs 
manifested by AATT. This indicates that AATT+ can still effectively manifest concurrency bugs that AATT can.

To further demonstrate the effectiveness of our extension, we further compared the results for test subjects of the 
Knowns and the Randoms. As the Table 2(a) shows, AATT only reported known bugs in two apps, leaving bugs in the rest 13 
apps un-manifested. As a comparison, AATT+ successfully manifested concurrency bugs in 10 of 15 apps, as we discussed 
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in Section 5.2.1. Moveover, AATT+ also reported bugs in 11 test subjects of the Randoms, as Table 2(b) shows, two of which 
was not manifested by AATT. According to our further investigation, the difference is due to following reasons:

Capability of identifying conflicting APs AATT+’s extended analysis of the pre-processing phase (i.e., the GreenDroid-enhanced 
dynamic analysis) is more capable of identifying conflicting APs and tasks. We compared the conflicting APs and tasks found 
by AATT and AATT+. The static-dynamic hybrid analysis of AATT often missed crucial APs, which were required for manifest-
ing concurrency bugs in some test subjects. This is because that: (1) it ignores enabling events of concurrency-bug related 
events, which can be useful for manifesting bugs, and (2) the imprecise and incomplete call graphs from static analysis can 
lead to missing important conflicting APs. We found two cases (AnyMemo and k-9 Mail) where the lack of conflicting APs 
led to false negatives. On the other hand, with the GreenDroid-enhanced dynamic analysis, AATT+ successfully found such 
crucial conflicting APs and tasks, and thus successfully manifested the concurrency bugs.

Capability of scheduling life-cycle events AATT+’s extended analysis of the manifestation phase adopts heuristic methods for 
component life-cycle event scheduling, while AATT lacks the ability of scheduling these events. For instance, our test subject 
AnyMemo contains a background task that downloads files. It shows a dialogue at foreground when the background down-
loading finishes. If the Activity object’s onDestroy task is posted before the dialogue shows, the downloaded content will 
be discarded and the file will be re-downloaded. Here the precise schedule of the onDestroy task is crucial for manifesting 
the bug. However, AATT is completely unable to achieve such schedule. As described in Section 3.4, our heuristic methods 
for scheduling component life-cycle events is capable of achieving such scheduling. By rotating the screen which resulted in 
destroying and recreating the Activity object, AATT+ was capable of manifesting the concurrency bug in AnyMemo.

Due to these findings and the comparison, we can determine that AATT+ is more capable of manifesting concurrency 
bugs than AATT.

For efficiency, we compared the execution time of AATT and AATT+. In general, AATT+ took more time to analyze the test 
subjects, due to the heuristic scheduling of component life-cycle events, which is necessary for manifesting concurrency bugs 
concerning these events. Nevertheless, the overhead is tolerable, comparing with the overall execution time and considering 
the benefits it brings. Therefore, we can conclude that AATT+ preserves the efficiency.

With all these results, we can safely answer RQ3 that AATT+ can better manifest concurrency bugs than AATT while 
preserving the efficiency, i.e. the extension indeed improves AATT.

5.3. Discussions

We manually inspected all concurrency bugs in our test subjects and summarized the common root causes and symp-
toms of these bugs.

Root cause. The root causes of concurrency bugs in our test subjects can be categorized into three different categories. 
Atomicity violation and order violation are common causes of concurrency bugs in traditional concurrent programs [8], while 
complicated life-cycle events are a special cause of bugs in Android apps.

• Atomicity violation. This is a common cause of concurrency bugs. A set of operations is atomic, if it appears to be 
instantaneous for the rest of the system [25]. Therefore, shared resources should not be accessed by other tasks when 
a task is accessing them atomically. The violation of atomicity brings non-determinism and data races, and this can 
lead to concurrency bugs. In our test subjects, some sets of operations are assumed atomic by developers in order to 
provide determinism for program logic. However, ensuring atomicity could be tricky, and 17 bugs in our test subjects 
were caused by atomicity violation.

• Order violation. This is another common cause of concurrency bugs. Similar with atomicity violation, developers tend 
to assume a certain execution order of tasks. However, developers can make poor efforts ensuring assumed execution 
orders, and this could lead to concurrency bugs. We found 9 concurrency bugs due to order violation.

• Complicated life-cycle events. It is a special cause of Android apps’ concurrency bugs. In order to ensure performance, 
Android provides complicated life-cycle events for app components. These events can result in changing states of the 
app components, and this can affect the atomicity and execution order of tasks associated with the components. There 
were 10 bugs in our test subjects that were caused by not considering these life-cycle events.

Symptom. In order to study what symptoms these concurrency bugs caused, we inspected reports provided by AATT+ 
and the executions of analysis tools used in our evaluation. We found that concurrency bugs in our test subjects led to both 
app crashes and malfunctions.

• Crash bugs. There are 11/26 concurrency bugs that led to app crashes. The reported exceptions included Null Pointer 
Exception (NPE), Concurrent Modification Exception (CME), Bad Token Exception (BTE), etc. These bugs are severe since they 
caused complete breakdown.
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• Functional bugs. There are 15/26 concurrency bugs that led to different levels of malfunctions. For instance, the con-
currency bug in AnyMemo led to re-downloading of the file, and the one in aarddict, a dictionary app, caused the app 
failing to load words that were searched. These bugs greatly reduced user experience.

5.4. Limitations

In order to investigate the reasons AATT+ failed to manifest known bugs in 5 of the test subjects of the Knowns, we 
further inspected the code of these test subjects. We found that AATT+ failed to manifest the bugs due to following reasons:

Sophisticated event and task schedules As shown in Section 3.4, we generate schedules for events and tasks to manifest 
concurrency bugs, but some bugs require more sophisticated schedules to manifest. Some bugs require certain schedules of 
certain asynchronous tasks to manifest, which can be difficult to determine since these tasks can have no explicit conflicting 
AP. Since AATT+ schedules tasks based on their conflicting APs, it is unable to generate desired schedules for tasks with no 
explicit conflicting AP. Our test subject SunShine, a weather app, is an example. When starting the app, SunShine’s main 
Activity object’s onCreate task sets up a background task, which will be executed after some delay. Sunshine then sets up 
environment in another background thread, and signals the first background thread to execute the delayed task when the 
setup finishes. SunShine developers assumed that the execution order is guaranteed. However, if a life-cycle event, which 
results in recreating the Activity object, is sent before the setup finishes, the setup will be stopped and the Activity object’s
onRestoreInstance method, which will be invoked when recreating an Activity object, will signal the background 
thread to execute the delayed task before the setup completes. This breaks the developers’ assumption on the execution 
order and crashes the app. To manifest this bug, one must send a certain life-cycle event to the app before the setup 
procedure processed in a background thread finishes, and this is difficult to determine since these tasks have no explicit 
conflicting AP.

Sophisticated execution paths. Some subjects’ concurrency bugs are on execution paths that are difficult to reach. Some of 
the bugs are contained in execution paths handling exceptions. For instance, the concurrency bug in weiciyuan is contained 
in execution paths handling network connection exceptions. Moreover, some of the bugs require more complicated input 
event sequences to manifest. This can be addressed by adopting more powerful event generation techniques.

Two of these five concurrency bugs were detected by existing techniques [3,4], namely the bugs in weiciyuan and Douya. 
However, they were reported along with many false positives by these existing techniques, and this is a major disadvantage 
of these techniques, as compared to AATT+.

Further more, although we did not find such bugs in our test subjects, there can be other types of bugs that our current 
implementation of AATT+ cannot manifest, such as bugs that require more than two simultaneous events to manifest. 
Addressing these situations can raise the time complexity exponentially. We will address these challenges in our future 
work. Nevertheless, AATT+ successfully manifested most of the concurrency bugs in our test subjects, and this suggests its 
effectiveness.

6. Lesson learned

In order to thoroughly study the common patterns of concurrency bugs in our test subjects, we further inspected the 
bug-related code in these subjects, and summarized the bug characteristics in Table 3. We categorized the bugs by the 
following four criteria:

• We categorized the bugs by the number of threads they concern. We found that 12 of the bugs were manifested solely 
in the main thread, while the other 14 bugs involved multiple threads. We name them single-threaded event-based 
bugs [5] and multi-threaded event-based bugs, respectively.

• We categorized the bugs by events triggering them. Seven of the bugs can be triggered by a single event, while the other 
19 bugs required multiple events to trigger.

• We also categorized the bugs by their root causes, namely atomicity violation, order violation, and complicated life-cycle 
events, as described in Section 5.3.

• The symptoms described in Section 5.3 were also used to categorize the bugs, namely crash bugs and functional bugs.

Summarizing the bugs we categorized, we found that concurrency bugs of Android apps have both similar and different 
patterns, as compared with those of multi-threaded desktop/server programs [8]. Our findings are summarized in Table 4, 
and are elaborated on as follows.

Finding (1): All concurrency bugs of our experimental subjects belong to either atomicity violation (17/26) or order violation
(9/26) despite the efforts on ensuring atomicity and execution orders by both developers and the Android system.
Implication: Concurrency bug detection for Android apps should focus at least on these two patterns.
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Table 3
Categorization of experimental subjects.

App Categoriesa

Thread Event Root cause Symptom

aarddict M S AV F
aNarXiv M M AV C
andiodine S M LC (AV) C
Down M M AV C
falling blocks M M AV F
GigaGet S M LC (AV) C
HostIsDown M M AV F
LilyDroid M M AV C
MultiPing S M LC (OV) C
ConnectBot M S LC (OV) C
AnkiDroid S M LC (AV) F

vlilleChecker M S AV C
AnyMemo S M LC (AV) F
OIFileManager S M LC (AV) F
Tomdroid S M OV C
MyTrack S S LC (AV) F
ChatSecure M S OV F
Feedex M M AV F
k-9 Mail M M AV F
todowidgit S S LC (OV) F
FBReader S M OV C

SunShine M S LC (OV) C
sgtpuzzle M M AV F
AAT S M OV F
Douya M M AV F
weiciyuan S M OV F

a Column Thread: S for single-threaded bug, and M for multi-threaded bug.
Column Event: S for single event, and M for multiple events.
Column Root Cause: AV for atomicity violation, OV for order violation, and LC (XX) for complicated life-cycle 

events (XX presents the ultimate root cause).
Column Symptom, C for crash bug, and F for functional bug.

Table 4
Summary of Android concurrency bug patterns.a

Findings Implications

(1) All concurrency bugs of our experimental subjects belong to either 
atomicity violation (17/26) or order violation (9/26).

Concurrency bug detection for Android apps should at least focus on 
these two patterns.

(2) Life-cycle events for Android app components complicate the concurrent 
execution and can introduce Android-specific concurrency bugs.

Developers need to understand component life-cycle events for avoiding 
Android-specific concurrency bugs.

(3) Developers may incorrectly assume the atomicity of a task sequence, 
which can be broken by another sequence. Particularly, 
a self-conflicting task can result in atomicity violation with itself.

Developers should pay attention to this special type of bugs as it is 
Android-specific and can often be out of developers’ consideration.

(4) Developers may use concurrency mechanisms provided by Android 
improperly, and this can lead to order violation.

Developers of Android apps should understand Android-provided 
mechanisms and use them properly.

a Atomicity Violation [8]: The desired serializability among multiple memory accesses is violated, i.e. a code region is intended to be atomic, but the atomicity is not 
enforced during the execution.

Order Violation [8]: The desired order between two (groups of) memory accesses is flipped, i.e. A should always be executed before B, but the order is not enforced 
during the execution.

We found that although the Android system provides various mechanisms to help developers ensure the proper atomicity 
and execution orders of an Android app’s tasks, these two key factors in keeping a multi-threaded program correct [8] can 
still be violated.

For atomicity violation, the Android system does not allow a thread to execute another task until the current one finishes. 
This ensures that tasks executed in the same thread can be considered atomic. However, when tasks are executed in different 
threads, or when developers expect a series of tasks to be executed atomically, such mechanism fails to protect the desired 
atomicity.

For order violation, the Android system provides a set of components, such as AsyncTask and Loader, to help ensure 
the proper execution order of multi-threaded tasks. However, when developers mix the Android concurrency with native 
threads instead of using these Android-provided mechanisms, or when they use such mechanisms improperly, concurrency 
bugs due to order violation can occur.
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We further inspected the code of our buggy experimental subjects. We found that a significant number (17/26) of the 
concurrency bugs in our test subjects are Android-specific. We focused on studying these Android-specific bugs. Our findings 
are summarized below.

Finding (2): Life-cycle events for Android app components complicate the concurrent execution and are a significant cause 
of Android-specific atomicity/order violation bugs (10/17).
Implication: Developers need to understand component life-cycle events for avoiding Android-specific concurrency bugs.

As described in Section 5.3, component life-cycle events are an important feature of Android, and many researches 
focus on or concern it [26,27]. From our categorization and investigation, we found that it is common in Android apps 
that Android-specific concurrency bugs occur due to these complicated life-cycle events. In fact, we found that 10 of our 
concurrency bugs fall into this category.

We found that a life-cycle event can trigger a concurrency bug even though it does not have any explicit AP. There 
are two situations. First, a life-cycle event can result in destroying or recreating an app component, and this affects all 
the background tasks associated with the component. This is the situation where the atomicity of background tasks can 
be violated. It normally involves background tasks since the main thread cannot execute another task until the current 
one finishes. Therefore concurrency bugs of this type are normally multi-threaded. The concurrency bug in our test subject 
AnyMemo is one example, as described in Section 5.2.3. An unexpected recreation of the Activity object breaks the atomicity 
of a background task, and this leads to a functional bug.

Second, an unexpected schedule of life-cycle events can lead to order violation. Handling a life-cycle event can change the 
state of an app component, and this can affect the execution order of tasks associated with the component. For example, 
our test subject SunShine has a concurrency bug due to order violation, as described in Section 5.4. A life-cycle event, 
which results in recreating the main Activity object, will lead to invoking the main Activity object’s onRestoreInstance
method, which will signal the background thread to execute the delayed task before the setup completes. This breaks the 
developers’ assumption on the execution order and crashes the app.

In summary, complicated life-cycle events can lead to both atomicity and order violation. Detecting and understanding this 
kind of concurrency bugs require deep understanding to such mechanisms of the Android system.

Finding (3): Developers may incorrectly assume the atomicity of a task sequence, which can lead to a concurrency bug if 
another task sequence, which is triggered by a simultaneous event input and conflicts with the first sequence, breaks the 
atomicity. Particularly, a self-conflicting task sequence can result in atomicity violation with itself.
Implication: Developers should pay attention to this special type of bugs as it is Android-specific and can often be out of 
developers’ consideration.

We found that when a single input event triggers more than one task, Android developers can assume that the task 
sequence handling the event will be executed atomically. However, in order to respond to input event sequences quickly, 
other tasks can be exercised between the executions of a sequence of tasks, and this can break the assumed atomicity. For 
instance, LilyDroid, an app for a BBS Little Lily, accesses a shared resource in a listener task tl and a task tb . The tl task is 
triggered by an user event, and the tb task is posted by tl . Task tl writes the resource, and later tb reads it. The developers 
of LilyDroid assumed that tl and tb together are executed atomically and thus does not lock the shared resource. However, 
in order to respond to another user event, another task t′ with a write AP on the same shared resource, which executes in 
the main thread, can be posted and executed between tl and tb . Therefore, the actual execution order can be (tl → t′ → tb). 
This breaks the atomicity assumed by the developers of LilyDroid, and leads to app crash. This is a common pattern of 
Android apps’ concurrency bugs due to atomicity violation. We found four concurrency bugs that were of such case.

LilyDroid crashes when two different events trigger two different task sequences, which lead to atomicity violation. 
Particularly, we found that there are also situations where two identical events trigger a concurrency bug. It is interesting 
because developers normally do not consider the situation where a task sequence conflicts with itself, and this can lead 
to concurrency bugs. We discovered three apps, namely GigaGet, MultiPing, and andiodine, that have this kind of bugs. 
Moreover, we observed that all bugs in GigaGet, MultiPing, and andiodine led to double executions of a one-time only task. 
GigaGet crashed when two deletions of the same item object were exercised. MultiPing, which is a tool for testing network 
latency, crashes when the same IP address is deleted twice by clicking it twice quickly. As for andiodine, an Android VPN 
tool, double replacing transactions of the same Fragment object resulted in app crashes. Both of the bugs occurred because 
an additional task sequence triggered by the second event broke the atomicity assumed by the developers.

Finding (4): Developers may use Android-provided mechanisms improperly, and this can lead to order violation.
Implication: Developers of Android apps should understand Android-provided mechanisms and use them properly.

Although the Android system provides mechanisms to ensure the proper execution order of tasks, we found that there are 
still situations where concurrency bugs appear due to order violation. We found that some developers failed to properly use 
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Android-provided asynchronous models. For instance, ChatSecure, a popular instant messaging app, uses an AsyncTask
object to set up environment when an app user starts a group chat. According to the mechanism of AsyncTask, the 
shared resources processed by the doInBackground task should be accessed in the onPostExecute task to ensure 
that the resources are properly processed when accessed. However, ChatSecure directly accesses the resources in the main 
thread after it deploys the AsyncTask object, and this can lead to app crashes due to order violation. We found that 
3/9 concurrency bugs due to order violation have this pattern. In order to avoid such concurrency bugs, developers should 
properly use the asynchronous models provided by the Android system.

7. Related work

With continuous advances in mobile computing technologies, the popularity of smartphone uses with ordinary people 
grows larger and larger. The qualities of smartphone apps become even more important than before. Therefore, software 
engineering researchers have proposed various approaches to detecting program bugs and ensuring software quality.

Some pieces of work focus on general Android functional testing. DynoDroid [12] proposed generating required events 
for target apps based on random exploration and it works more efficiently than Monkey. A3E [7] implemented a depth-first 
search based on the dynamic model derived from an app, which considers each activity as an independent state in the 
search. Liu et al. [28] proposed VeriDroid, a tool that extends JPF to automatically verify Android apps. EvoDroid [29]
proposed combining Android-specific program analysis techniques and evolutionary algorithms for a novel framework for 
automated testing. However, EvoDroid cannot systematically reason about input conditions. GAT [30] proposed extracting a 
UI component’s relevant gestures through a static analysis, so as to reduce the amount of gesture events to be delivered in 
the automated testing. UGA [20] leveraged human insights to improve traditional testing approaches’ performance. However, 
these pieces of work have not considered conflicting resource accesses in an app and can miss concurrency bugs easily.

There are also some other pieces of work aiming at detecting date races in Android apps. Both DroidRacer [5] and 
CAFA [4] proposed generating execution traces by systematically exercising apps and then computing happens-before re-
lations on the traces to detect races. A more thorough and precise happens-before model was recently proposed [3]. The 
authors also proposed a scalable algorithm to build and query happens-before relation graphs. RacerDroid [31] attempted to 
manifest data races reported by an existing imprecise race detection tool, but it needs to modify the Android system code for 
scheduling events and threads. AsyncDroid [32] explored different thread interleavings by repeating given event sequences 
to detect thrown exceptions and assertion violations. EventTrack [33] proposed using a novel data structure, called event 
graph, to maintain a subset of happens-before relation and efficiently infer order between each pair of events. Bouajjani 
et al. [34] defined a correctness criterion, called robustness against concurrency, for a class of event-driven asynchronous 
programs including Android apps, and provided algorithms for checking such criterion. Hu et al. proposed ERVA [35], a race 
verification and reproduction approach that identifies true positives and harmful races in race reports produced by existing 
race detectors.

Some pieces of work also presented techniques that generate input-schedule combinations for traditional concurrent 
programs. RaceFuzzer [36] proposed executing programs with a randomized thread scheduler, which blocks threads at race 
points and randomly releases an available thread for execution. Another fully automatic testing technique [37] proposed 
generating test cases that invoke methods on an instance of the class under test and executing code sequentially to check 
whether the instance behaves as expected.

Additionally, some researchers paid close attention to ensuring non-functional quality for Android apps. CHECK-
DROID [38] is a dynamic analysis tool that automatically detects both functional and non-functional bugs in Android apps 
such as null pointer exception and resource leak. RepDroid [39] proposed using layout group graph (LGG) to automatically 
detect app repackaging. PerfDroid [40] is a static analysis tool, which summarizes some performance bug patterns and de-
tects them in Android apps. An automated test framework [41] systematically generates test inputs that may lead to energy 
hotspots/bugs in Android apps. GreenDroid, E-GreenDroid, and NavyDroid [6,42–44] traverses an app’s states as more as 
possible to find out states with low sensory data utilization coefficient values based on an application execution model de-
rived from the Android specification. The authors also published an empirical study about wake lock misuses in Android 
apps, and proposed ELITE, a wake lock misuse detection tool for Android apps [45]. CyanDroid [46] extends GreenDroid’s 
ability of diagnosing energy inefficiency for Android apps by generating multi-dimensional sensory data and considering 
app state changes at a finer granularity. However, these pieces of work have not considered concurrent execution of Android 
apps and cannot be directly applied for detecting concurrency bugs in Android apps.

8. Conclusion and future work

In this article, we proposed a novel approach to detecting concurrency bugs in Android apps by manifesting them during 
the execution of an app. Our approach adapts GreenDroid to guide the dynamic analysis to identify potentially conflicting 
APs in an Android app. Our SO-DFS algorithm explores the app’s state space and generates event-schedule combinations 
to exercise the APs to manifest potential concurrency bugs. Our prototype tool implementation AATT+ successfully detected 
previously unknown concurrency bugs in popular real-world Android apps.

There are still limitations in our approach. First, for now our tool implementation AATT+ supports only two-combination 
schedules of concurrency-bug related events due to the consideration of efficiency, and temporarily does not support situa-
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tions where a schedule of more than two conflicting events are required to manifest a concurrency bug. Second, currently 
the event-schedule combination generator of our tool implementation of AATT+ supports only part of the Android system 
events due to complicated mechanisms of the Android system and tedious development efforts. We plan to continue to 
improve our approach and its tool implementation to make it more practical.
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