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ABSTRACT
Android apps demand high-quality test inputs, whose generation re-
mains an open challenge. Existing techniques fall short on exploring
complex app functionalities reachable only by a long, meaningful,
and effective test input. Observing that such test inputs can usually
be decomposed into relatively independent short use cases, this pa-
per presents ComboDroid, a fundamentally different Android app
testing framework. ComboDroid obtains use cases for manifesting
a specific app functionality (either manually provided or automati-
cally extracted), and systematically enumerates the combinations
of use cases, yielding high-quality test inputs.

The evaluation results of ComboDroid on real-world apps are
encouraging. Our fully automatic variant outperformed the best
existing technique APE by covering 4.6% more code (APE only
outperformed Monkey by 2.1%), and revealed four previously un-
known bugs in extensively tested subjects. Our semi-automatic
variant boosts the manual use cases obtained with little manual
labor, achieving a comparable coverage (only 3.2% less) with a
white-box human testing expert.
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1 INTRODUCTION
Android apps are oftentimes inadequately tested due to the lack
of high-quality test inputs

1 to thoroughly exercise an app’s func-
tionalities and manifest potential bugs [11]. Existing automatic
testing techniques fall short on exploring complex app function-
alities that are only reachable by long and “meaningful” event
sequences [33, 59]. Random or heuristic test input generation tech-
niques [5, 6, 10, 28, 41–43, 56] can quickly cover superficial app
functionalities, but have difficulty in reaching deeper app states
to cover complex ones. Systematic input space exploration tech-
niques [7, 47, 48, 61, 65] have severe scalability issues. Manual
testing is effective and thorough, but also tedious, labor-intensive,
and time-consuming, and usually hinders the rapid release of an
app.

To generate high-quality test inputs to thoroughly explore an
app’s functionalities, we observe that a long and meaningful test
input can usually be decomposed into relatively independent use
cases. A use case is a short event sequence for manifesting a desig-
nated app’s functionality, e.g., 1 toggling a setting, 2 switching
to an activity, or 3 downloading a Web content. 1 → 2 → 3
is a long (and meaningful) test input, and is particularly useful in
manifesting diverse app behaviors when the app’s behavior in 3
varies on different settings in 1 .

Conversely, we can solve the problem of generating long and
meaningful test inputs by a fundamentally different two-phase
approach, which we call it the ComboDroid framework:

(1) Collect high-quality use cases that cover as many basic app
functionalities as possible.

(2) Concatenate a number of use cases to form a test input for
covering complex functionalities.

Use cases can be either manually provided (e.g., by an app’s
developer) or automatically extracted from execution traces. Since
developers clearly know how the requirements are implemented,
they can easily provide high-quality use cases with little manual
labor. To extract use cases automatically from execution traces,
1In the context of testing Android apps, a test input is a sequence of the Android
system’s atomic input events (touching, swiping, etc.).
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we leverage the insight that use cases, by their definitions, almost
begin and end at quiescent app states, usually with a stable GUI. We
accordingly designed an algorithm to automatically identify such
GUI states and extract use cases from long event sequences.

To efficiently generate high-quality use case combinations (or
combos for short) as test inputs, we devise an algorithm to triage
combos for a maximized testing diversity. Particularly, we define the
aligns-with relation, which determines whether two use cases con-
nected at the same quiescent state, to prune likely invalid combos.
We also define the depends-on relation, which determines whether
a use case can affect the behavior of another. We generate only
aligned combos with sufficient data-flow diversities for an effective
test input generation.

We implemented these ideas as the ComboDroid tool, including
the fully automatic ComboDroidα and semi-automatic Combo-
Droidβ . The evaluation results are encouraging that ComboDroid
is effective in both testing scenarios:

(1) The fully automatic ComboDroidα covered 4.6% and 6.7%
more code on average compared with the most effective
existing technique APE [28] and most widely used technique
Monkey [26], respectively. ComboDroidα also revealed four
previously unknown bugs in extensively tested subjects [51–
54].

(2) The semi-automatic ComboDroidβ boosted the coverage of
manually provided use cases by 13.2%, achieving a competi-
tive code coverage (the gap is only 3.2%) compared with a
human testing expert, but with much less manual labor.

The rest of this paper is organized as follows. Section 2 presents
an overview of our approach with an illustrative example. Details
of our approach are discussed in Section 3. Section 4 introduces
the ComboDroid implementation and our extensive evaluation is
conducted in Section 5. Section 6 surveys relatedwork, and Section 7
concludes this paper.

2 OVERVIEW
Figure 1 displays the ComboDroid workflow. ComboDroid takes an
app under test P and repeats the two-phase testing procedure con-
sisting of obtaining use cases (the left box) and enumerating use case
combos (the right box). We explain the workflow of ComboDroid
using a motivating example, a previously unknown bug2 found by
ComboDroidα in Aard2 (a popular dictionary app). This bug re-
quires a long (andmeaningful) test input 1 → 3 → 2 → 4 → 5
to trigger.
Obtaining use cases. We first observe that a meaningful use case
(event sequence) usually begins and ends at quiescent app states,
in which the app is idle (completes handling of all received events)
on a stable GUI. Quiescent states naturally indicate that a human
can perform the next step of an action in the computer-human
interaction. In Aard2, useful use cases include adding/deleting a
dictionary, searching for a word, view a word’s detail explanations,
etc.

Use cases can be provided by a human developer (noted CDβ ).
ComboDroid contains an auxiliary tool to help developers col-
lect uses cases by recording event sequences (both UI and system
2Aard2 has been extensively evaluated in the existing studies [43, 56, 57]. However,
ComboDroidα is the first to uncover this bug.

events [46]) at a specified time interval. ComboDroid automatically
identifies quiescent states, and collects execution traces and GUI
snapshots along with the use cases. In Aard2, the app’s developer
would have no difficulty in providing meaningful use cases like 1 ,
2 , . . . , 5 , and ⋆ .
Use cases can also be extracted by an automatic analysis of an

app’s existing execution traces (noted CDα ). ComboDroid mines an
extended labeled transition system (ELTS) [31] at runtime based on
the GUI transitions using an existing algorithm [10]. Similar stable
GUIs are clustered as a single state in the ELTS. Each input event
between a pair of stable GUIs in the execution traces is added as a
transition (labeled with that event) in the ELTS.

To bootstrap CDα (as there is no trace at first), we implemented
a baseline DFS-alike state space exploration tool [5] to generate
initial testing traces. Unique acyclic transitional paths on the ELTS
are extracted as likely use cases. In Aard2, automatically generated
use cases are not as readable as manual ones, but share similar
features (e.g., starting from and ending at quiescent app states).
Nevertheless, ComboDroidα successfully identified different pages
(e.g., the dictionary, search, and detail page) as distinct states in the
ELTS, and the generated use cases cover all functionalities in 1 , 2 ,
. . . , 5 , and ⋆ .
Enumerating use case combos. Either way, ComboDroid enu-
merates the combinations (combos) of use cases to obtain high
quality test inputs. A combo is a sequence of use cases

u1 → u2 → . . .→ un

whereu1 starts from the app’s initial state. Tomake combos effective
in testing, a combo should additionally satisfy:

(1) Deliverability: for all 1 ≤ i < n, ui aligns with ui+1. For u to
be aligned with v , the last GUI layout in u should be similar
to the first one of v (such that it is sane to deliver v to the
app immediately after u). Similarity is characterized by an
editing-distance based measurement.

(2) Dataflow diversity: there exists at least k distinct pairs of
(ui ,uj ) where ui depends on uj and i > j. For u to be de-
pendent on v , there should be some shared program states
used in u and modified in v . Thereby we filter out loosely
connected use case combos.

The systematic enumeration in ComboDroid first searches for
data-dependent pairs for a maximized data flow diversity, and then
adds random transitional use cases to satisfy the deliverability. In
Aard2, 1 → 2 and 4 → 5 are data-dependent3. Then, Combo-
Droid generates 1 → 2 → 4 → 5 as a skeleton, which is filled
with transitional use cases ( 3 and ⋆ s) to yield the bug-triggering
combo in Figure 1 (a combo of n = 8,k = 2).
The feedback loop. Generated combos are delivered to the app
with execution traces being collected. After the delivery, Combo-
Droid terminates if there is no newly explored quiescent app state
other than those identified during the use case generation. Other-
wise, ComboDroid restarts the first phase to either ask a human for
additional effective use cases concerning these states (e.g., visiting
them during the execution), or extract more potentially profitable

3Use case delete a dictionary ( 2 ) overwrites the dictionary object referred in add

a dictionary ( 1 ), and thus 2 depends on 1 . For a similar reason on the shared
WebView object, 5 depends on 4 .
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Figure 1: ComboDroid overview and a motivating bug example

use cases from the ELTS refined by the newly collected execution
traces.
Manifestation of the bug. The combo in Figure 1 crashes the app.
After deleting a dictionary, all of its detail word explanations are
removed. However, the “detail” page of a previously searched word
is still cached in the app. Returning to such a detail page displays
a null (blank) WebView. A subsequent zoom-in triggers the crash
by a NullPointerException. All eight use cases (12 events) are
necessary to trigger the bug, and such a long event sequence is not
likely to be generated by existing techniques, which indeed failed
to do so in our evaluation.

3 APPROACH
3.1 Notations and Definitions
Given an Android app P , our goal is to generate high-quality test
inputs via use case combinations. Android apps are GUI-centered
and event-driven. The runtime GUI layout (snapshot) ℓ is a tree in
which each nodew ∈ ℓ is a GUI widget (e.g., a button or a text field
object). We usew .type to refer tow ’s widget type (e.g., a button or
a text field). When P is inactive (closed or paused to background),
there is no GUI layout and ℓ = ⊥.

An event e = ⟨t, r , z⟩ is a record in which e .t , e .r , and e .z denote
e’s event type, receiver widget, and associated data, respectively. An
event can be either a UI event or a system event, and examples of t
are “ui-click”, “ui-swipe”, or “sys-pause”. For a UI event, the receiver
r (ℓ) = w denotes that e can be delivered to w ∈ ℓ at runtime.
r (ℓ) = ⊥ indicates that this event cannot be delivered. A system
event’s receiver is always the “system” widget. Other event-specific
information is stored in z, e.g., texts entered in a text field or the
content of an added file.

Executing P with a sequence of events E = [e1, e2, . . . , en ] yields
an execution trace τ = ExecuteP (E) = ⟨L,M,T ⟩. As defined in
Algorithm 1, L4,M , andT denote the dumped GUI layouts, method
invocation trace, and each event’s corresponding method invoca-
tions, respectively.

4For L = [ℓ1, ℓ2, . . . , ℓn+1], ℓi is the GUI layout dump (at a quiescent state) after
the first i − 1 events in E are sent to the app.

Algorithm 1: Execution of a sequence of events
1 Function ExecuteP (E)
2 ℓ ← GetGUI(); L ← [ℓ]; M ← ∅; T ← ∅;
3 for each e ∈ E do
4 if r (ℓ) , ⊥ then // e can be sent on ℓ

5 M ′ ← SendEventToApp(e .t , e .r (ℓ), e .z); // send
event e to P , wait for a quiescent state, and return the
corresponding method invocation sequence

6 M ← M :: M ′; T ← T ∪ {⟨e ,M ′⟩ };
7 ℓ ← GetGUI(); L ← L :: [ℓ];

8 else
9 return ⊥;

10 return ⟨L,M ,T ⟩;

A use case u = [e1, e2, . . . , e |u |] is also an event sequence. It
is straightforward for a human developer to manually provide
use cases in either way: (1) annotating use cases as substrings in
an execution trace τ , or (2) feeding τ to the following automatic
extraction algorithm.

3.2 Use Case Extraction
Use cases are extracted upon a mined extended labeled transition
system [31] (ELTS). Furthermore, in the fully automatic settings in
which no trace is provided, we use a standard depth-first exploration
to obtain a bootstrapping trace.
Mining an Automaton. Given an execution trace τ = ⟨L,M,T ⟩
from executing event sequence E, its corresponding ELTS is a three-
tuple G = ⟨S, E, δ⟩, in which S is a set of abstract states ({s | s ∈ S}
is a partition of the GUI layouts L) and δ : S × E → S contains the
state transitions.

We adopt the existing algorithm in SwiftHand [10] for min-
ing a minimal ELTS that groups similar GUI layouts together, i.e.,
equivalent(ℓ1, ℓ2)5 holds for all GUI layouts ℓ1, ℓ2 in the same

5We use the Lv.4 GUI Comparison Criteria (GUICC) of AMOLA [6] to measure the
similarity between GUIs, i.e., GUI layouts ℓ1 and ℓ2 are equivalent if and only if
∀e ∈ E .e .r (ℓ1) , ⊥ ↔ e .r (ℓ2) , ⊥.
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Algorithm 2: ELTS Mining
1 Function

MineELTS(⟨L = [ℓ1, ℓ2, . . . , ℓn+1],M ,T ⟩, E = [e1, e2, . . . , en ])
2 S ← {{ℓ } | ℓ ∈ L }; // initially, no state is merged
3 δ ← {⟨ℓi , ei , ℓi+1 ⟩ | 1 ≤ i ≤ n };
4 for each (si , sj ) ∈ S × S and si , sj do // in the BlueFringe

ordering [35]
5 ⟨S ′, δ ′⟩ ← merge-recursive(si , sj , S , δ);
6 if ⟨S ′, δ ′⟩ , ⊥ then
7 ⟨S , δ ⟩ ← ⟨S ′, δ ′⟩; // update merged states

8 return ⟨S , E , δ ⟩;

9 Function merge-recursive(s , t , S , δ )
10 if ∀ℓ1 ∈ s , ℓ2 ∈ t . equivalent(ℓ1, ℓ2) then
11 S ′ ← S \ {s , t } ∪ {s ∪ t }; δ ′ ← δ [s/t ];
12 for each ⟨s , e , t1 ⟩, ⟨s , e , t2 ⟩ ∈ δ where t1 , t2 do
13 ⟨S ′, δ ′⟩ ← merge-recursive(t1, t2, S ′, δ ′);
14 if ⟨S ′, δ ′⟩ = ⊥ then
15 break;

16 return ⟨S ′, δ ′⟩;

17 return ⊥; // merging failed

state s . Such an algorithm (Algorithm 2) is originally used in the
dynamic model extraction of Android apps.
Extracting use cases. A valid pathp = [s0, s1, . . . , sm ] onG(S, E, δ )
where δ (si−1, ei ) = si for all 1 ≤ i ≤ m naturally corresponds to
the sequence of events

u = [e1, e2, . . . , em ]

as a likely use case. Therefore, the automatic use case extraction
algorithm enumerates all acyclic paths in G and produces a use
case for each of them.

Note that our automatic algorithm extracts likely use cases from
the ELTS. In such a manner, we can maximize the chance of ex-
hausting all possible use cases. Moreover, most likely use cases can
be real use cases, while others share similar features with them
(e.g., starting from and ending at quiescent app states) and can also
be effective exploring the app’s behavior.
Bootstrapping the use case generation. In the fully automatic
setting of ComboDroid, the use case extraction is bootstrapped by
a standard DFS-alike state space exploration strategy similar to the
A3E algorithm [5].

Starting from the initial state, we take the GUI layout snapshot
ℓ, analyze all widgetsw ∈ ℓ for all possible actions onw . For each
action (e.g., clicking a button, or entering a random text from a
predefined dictionary to a text field [43]), we create an event e6 and
add it to Eui . We then sequentially execute (send the event to the app
and wait for a quiescent state) all events in Eui ∪ Esys , where Esys is
a set of predefined system events. If executing an event reaches an
unexplored GUI ℓ′, the exploration is recursively conducted on ℓ′; if
all events are exercised or reaching an explored GUI, backtracking
is performed (thus this is a depth-first exploration). The depth-first
exploration yields a sequence of events E

dfs
.

6For e = ⟨t , r , z ⟩, e .t and e .z are straightforward to determine. The receiver e .r is
determined by an editing-distance based algorithm described later in Section 3.3.

3.3 Enumerating Use Case Combos
Suppose that use cases U = {u1,u2, . . . ,un } are extracted from
execution trace τ = ⟨L,M,T ⟩ by executing event sequence E. A use

case combination (or combo) is a sequence of use cases denoted by
[ui1 → ui2 → . . . → uik ]. Sequentially concatenating the events
in the use cases of a combo yields a runnable test input.

Unfortunately, randomly generated combos usually stop early
in an execution because there will likely exist an event e that has
no receiver on the deliver-time GUI ℓ, i.e., e .r (ℓ) = ⊥. Consider the
combo 2 → 5 in the motivating example (Figure 1). The “zooming
in” event has no receiver after deleting a dictionary because the
current GUI does not contain a ListView menu containing the
ZoomIn button.

To generate high-quality use case combos, we leverage the fol-
lowing two use case relations:

Aligns-with. For two use cases u = [e1, e2, . . . , en ] and v =
[e ′1, e

′
2, . . . , e

′
m ], we say that u aligns with v , or u ; v , if we have

witnessed once that e ′1 can be successfully delivered after en . In
other words,u ; v if e ′1.r (ℓn ) , ⊥where ℓn is the GUI layout after
the execution of en ∈ E in the trace τ .

Another issue in the use case alignment (and replaying an event
sequence) is to determine how to deliver a UI event e to a particular
GUI layout. For ℓ = {w1,w2, . . . ,w |ℓ |} being the GUI layouts right
before e was sent in τ , and an arbitrary ℓ′ = {w ′1,w

′
2, . . . ,w

′
|ℓ′ |
},

we know that there exists 1 ≤ i ≤ |ℓ | such that e .r (ℓ) = wi ∈ ℓ

becausewi is e’s receiver widget in τ . Therefore, the widgetw ′j ∈ ℓ
′

that is “most similar” to wi should be the receiver of e on ℓ′, i.e.,
e .r (ℓ′) = w ′j .

To measure the similarity between GUI layouts, we compute
the editing distance between ℓ and ℓ′ using the algorithm in Rep-
Droid [68]. We find the shortest editing operation sequence (each
editing operation is either inserting or removing a widget) that
transforms ℓ to ℓ′. If wi is not removed during the transforma-
tion, it must have a unique correspondence w ′j ∈ ℓ

′. We thus let
e .r (ℓ′) = w ′j ; otherwisewi is removed and e .r (ℓ′) = ⊥.

Depends-on. For use cases u and v , we say that v depends on u,
or u d v , if the two use cases are potentially data-dependent. Data
dependency is measured at a method level. Considering the method
invocation trace in τ , if there exists a methodm ∈ T (e) for e ∈ u
andm′ ∈ T (e ′) for e ′ ∈ v such thatm′ data-depends onm, we say
that u d v . Data dependencies between methods are determined
by a lightweight static analysis.m′ data-depends onm if there is an
(abstract) object or resource write-accessed inm and read-accessed
inm′.

Combo generation. Aligns-with and depends-on relations guide
our use case combination (combo) generation. To maximize the
diversity of generated combos, we enforce each combo c = [u1 →
u2 → . . .→ u |c |] to satisfy:

(1) Each combo is an independent test case: e1.r (ℓ0) , ⊥ for ℓ0 ∈ L
being the app’s initial GUI layout and e1 being the first event
in u1;

(2) Consecutive use cases in the combo are aligned: ui ; ui+1 for
all 1 ≤ i < |c |; and
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Algorithm 3: Combo Generation
1 Function RandomCombo(U , ℓ0, k )
2 G(V , E) ← randomDAG(2k); // random DAG of |E | = 2k
3 F ← {(v , randomChoice(U )) |v ∈ V }; // randomly assign each

v ∈ V a use case inU
4 if | {e | e = ⟨v1, v2 ⟩ ∈ E ∧ F (v1) d F (v2)} | ≥ k then
5 for each linear extension [v1, v2, . . . , v |V |] of G do
6 for u0 = [e1, e2, . . . , em ] ∈ U ∧ e1 .r (ℓ0) , ⊥ do
7 c ← connect(u0, F (v1),U , 0) ::

connect(F (v1), F (v2),U , 0) :: . . . ::
connect(F (vn−1), F (v |V |),U , 0) :: [F (v |V |)];
// add paddings such that consecutive use cases are
aligned

8 if ⊥ < c then
9 return c ;

10 return ⊥;

11 Function connect(u , dst,U , depth)
12 if u ; dst then
13 return [u];

14 if depth > MAX_DEPTH then
15 return ⊥;

16 for u′ ∈ U ∧ u ; u′ do
17 seq ← conncet(u′, dst,U , depth + 1);
18 if seq , ⊥ then
19 return [u] :: seq;

20 return ⊥;

(3) Use cases in a combo exhibit k-data-flow diversity, i.e., there
exists k distinct pairs of (ui , uj ) (1 ≤ i < j ≤ |c |) such that
ui d uj .

The algorithm for generating a combo is presented in Algo-
rithm 3. Given a set of use casesU , the app’s initial GUI layout ℓ0,
and a data-flow diversity metric k , a random skeleton is first sam-
pled. A skeleton is a directed acyclic graph G(V , E) where |E | = 2k .
If the data-flow diversity ofG is less than k (Line 4), the generation
should be restarted. Otherwise, each vertex v ∈ V is assigned with
a random use case F (v) inU (Lines 2–3);

A liner extension of the skeleton G corresponds to a sequence
of use cases: [F (v1), F (v2), . . . , F (v |V |)]. We try to pad use cases
F (vi ) and F (vi+1) (1 ≤ i < |V |) with more use cases to obtain a
combo c such that consecutive use cases in c are aligned (Line 7).
The padding use cases are depth-first searched with a maximum
length limit MAX_DEPTH (Lines 11–20).

We also add paddings before the first use case in c (Line 6) such
that the resulting combo can be delivered to the initial app state
(and thus c can be used as an independent test case). If all aforemen-
tioned paddings exist7, we successfully obtained a use case combo
satisfying our requirements (Lines 8–9). Such a combo is sent to
the app for testing.

7A transition between each pair of GUIs naturally exist for a well-designed app.
Therefore, it is highly like that all aforementioned paddings exist.

3.4 Feedback Loop of ComboDroid
As Figure 1 shows, there can be multiple iterations of use case gen-
eration and combo enumeration. When enumerated combos are
sent to the app and discovered previously unknown states, a new
iteration should be initiated. Before the next iteration starts, a devel-
oper can manually inspect the testing report and provide/annotate
more use cases.

Suppose that we concatenate the execution traces in all previous
iterations of use case generation and combo enumeration. Concep-
tually, this can be regarded as adding an extra “restart” event after
sending all events in a combo8. Such a merged trace is used for the
ELTS mining and use case extraction in the next round of iteration.

4 IMPLEMENTATION
The ComboDroid framework is implemented using Kotlin and
Java. ComboDroid consists of a fully automatic variant Combo-
Droidα and a semi-automatic variant ComboDroidβ . We exten-
sively used open-source tools in the implementation, and Combo-
Droid is also open-source available9: GUI events are recorded by
Getevent [25]; GUI and system events are delivered using Android
Debug Bridge (ADB) [22]; GUI layouts are dumped by Android UI
Automator [24]; method traces are collected by program instrumen-
tation with Soot [13]. The implementation follows the descriptions
in Section 3. We follow the common practice of existing state-of-
the-art techniques [6, 28, 43, 56] and identify quiescent app states
by stabilized GUIs. Specifically, we take the same implementation
as APE [28] by dumping GUI layouts every 200ms until it is stable
(using the Lv.4 GUICC) with a 1000ms upper-bound.

For ComboDroidα , we implement the DFS-alike exploration
tool, and follow the same implementation as APE [28] by replaying
previous execution traces for backtracking. For ComboDroidβ , we
analyze the GUI layouts, where the human tester sends each event,
together with the corresponding event to determine each event’s
receiver.

In the lightweight static analysis to determine the depends-on
relation, we also model the Android 6.0 APIs (API level 23) [23]
to determine read/write accesses to resources, e.g., we determine
whether an SQL command in SQLiteDatabase.execSQL is a read
or write to the database. Moreover, for an (abstract) object, if any
method whose name matches the regular expression

(get|is|read)(.+)|on(.+)changed

is called, we consider it a read; Similarly, calling any method whose
name matches

(set|write|change|modify)(.+)

is considered a write.
The depth-first exploration of ComboDroidα was set with a

time limit of 30 minutes in each iteration. In the combo generation
(both ComboDroidα and ComboDroidβ ), we set data-flow diversity
k = 2 and MAX_DEPTH = 5. We generate d2 random combos (by
RandomCombo) if there are d depends-on edges.

8A restart event is also added after ELTS mining.
9https://github.com/skull591/ComboDroid-Artifact.
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5 EVALUATION
This section presents our evaluation of ComboDroid. The experi-
mental subjects and setup are described in Section 5.1, followed by
evaluation results of ComboDroidα (the fully automatic variant)
and ComboDroidβ (the human aided variant) in Sections 5.2 and 5.3,
respectively. Discussions including threats to validity are presented
in Section 5.4.

5.1 Experimental Subjects and Setup
The first column of Table 1 lists the 17 evaluation subjects. The
apps are selected using the following rules: First, we selected the
three largest (in LoC) apps evaluated in existing work [28, 43, 56]:
WordPress, K-9 Mail, and MyExpense. Second, we randomly se-
lected nine apps with at least 10K Downloads evaluated in the
existing work [28, 43, 56]: Wikipedia, AnkiDroid, AmazeFileM-
anager, AnyMemo, Hacker News Reader, CallMeter, Aard2,
World Clock, and Alogcat. Additionally, we randomly selected
five popular (at least 100 stars by 2018) open-source apps from
Github: AntennaPod, PocketHub, SimpleTask, Simple Draw,
and CoolClock.

If an app’s major functionalities cannot be accessed without a
proper initial setup (e.g., user login), we provide the app a script
to complete the setup. All evaluated techniques receive exactly the
same script (and the script runs automatically once the initial setup
GUI is reached) to ensure a fair comparison. We did not mock any
further functionality other than the initial setup script.

We use two metrics to measure the testing thoroughness. The
first is bytecode instruction coverage collected by JaCoCo [32], as
a higher code coverage strongly correlates to a better exercise of
an app’s functionalities. Second, we study whether the techniques
can manifest (and reproduce) previously known or unknown bugs
by examining the Android system’s logs.

To evaluate ComboDroidα , we compare it with the state-of-the-
art automated techniques:Monkey [26], Sapienz [43], andAPE [28]10.
For each subject, we ran each automatic testing technique for 12
hours to simulate a nightly continuous integration build-and-test
cycle. We ran ComboDroidα for termination or 12 hours at most.
For each subject, we ran each techniques three times and reported
the average results. Test coverage and bug manifestation results
are then studied.

To evaluate ComboDroidβ , we compare it with a human expert.
For manual use case generation of ComboDroidβ , we gave a re-
cruited tester one work day (~8 work hours) for each test subject and
then ran each subject for 12 hours. Meanwhile, we asked another
independently recruited Android testing expert (a post-graduate
student who had published a few research papers on testing and
analysis of Android apps) to cover as much code as possible given
a time limit of three workdays (~24 work hours). The human expert
had access to an app’s source code and was told to use coverage
feedback to maximize code coverage. Since manual labor is not
scalable, we only evaluated the subjects of top 10 LoC, as shown
in Table 3. To reduce distractions (as confirming and diagnosing

10Since APE [28] significantly outperforms Stoat [56] and other related work, we did
not show results of other techniques in this paper.

bugs are time-consuming), we asked the human expert not to pro-
vide any bug report. Therefore, only test coverage is studied in the
evaluation of ComboDroidβ .

All experiments were conducted on an octa-core Intel i7-4790U
PC with 16 GiB RAM running Ubuntu 16.04 LTS and an Android
6.0 Emulator.

5.2 Evaluation Results: ComboDroidα

The 12-hour coverage results and manifested bugs are listed in
Table 1 and Table 2, respectively. The detailed coverage trends
are plotted in Figure 2. These results are consistent with a recent
empirical study [59]: automated techniques by that time barely
outperform the simplest Monkey. The best existing technique, APE,
marginally outperforms Monkey by covering 2.1% more code.

Encouragingly, ComboDroidα consistently outperforms exist-
ing techniques in nearly all subjects11. For Alogcat, CoolClock,
and CallMeter, ComboDroidα terminated within 12 hours, while
for other subjects it ran until the time limit exceeded. Compared
with the best existing technique APE, ComboDroidα covered 4.6%
more code on average. This improvement is even 2× as much as
the improvement of APE over Monkey. Considering that the APE
implementation generates ~1.5×more events in 12 hours (~120K for
ComboDroidα v.s. ~300K for APE), ComboDroidα is considerably
more effective in exploiting each event’s merits.

The progressive coverage in Figure 2 shows that ComboDroidα
usually begins to outperform existing techniques after six hours.
Consider that the current ComboDroidα implementation emits
events at ~1/2 speed, the result is also promising. Furthermore,
code coverage gain of existing techniques is usually marginal (or
zero) in the last hours. In contrast, ComboDroidα is consistently
exploring useful use case combinations to cover more code.

The bug manifestation evaluation results (Table 2) are also en-
couraging. We manually examined the test logs of all techniques
and found 12 reproducible bugs with an explicit root cause. Exclud-
ing the bug in Simple Draw (ComboDroidα missed it due to an
implementation limitations), ComboDroidα manifested all 11 previ-
ously known or unknown bugs, where the best existing technique,
APE, manifested 7 (64%). We also reported four previously unknown
bugs (APE can discover only two of them) to the developers. All of
them were confirmed and two of which have been fixed. Further-
more, the two previously unknown bugs uniquely discovered by
ComboDroidα are deep bugs which require a long (and meaningful)
input sequence to trigger. The motivating example (Figure 1) is
such a case.

Therefore, we hold strong evidence that ComboDroidα is more
effective in automatically generating high-quality test inputs for
Android apps compared with existing techniques.

5.3 Evaluation Results: ComboDroidβ

The evaluation results of ComboDroidβ are displayed in Table 3.
For all subjects, ComboDroidβ ran until the time limit exceeded. It
is expected that the human testing expert significantly outperforms

11APE and ComboDroidα covered less code for Simple Draw compared with Monkey
because the implementations do not identify canvaswidgets and thus not send dragging
events. We consider this an implementation limitation.
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Figure 2: Progressive coverage report of evaluated techniques (averaged over three runs). The x axis is the time spent (0–12
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Table 1: Evaluation results of ComboDroidα : test coverage

Subject (Category, Downloads; LoC) Monkey Sapienz APE ComboDroidα Coverage trend

WordPress, WP (Social, 5M–10M; 327,845) 24.4% 24.3% 24.1% 36.1% (+11.7%)
AntennaPod, AP (Video, 100K–500K; 262,460) 57.5% 61.3% 65.5% 69.8% (+4.3%)
K-9 Mail, K9 (Communication, 5M–10M; 159,708) 19.1% 20.4% 26.3% 32.5% (+6.2%)
MyExpenses, ME (Finance, 500K–1M; 104,306) 43.8% 40.2% 48.6% 56.3% (+7.7%)
Wikipedia, Wiki (Books, 10M–50M; 93,404) 37.2% 39.3% 44.3% 45.1% (+0.8%)
AnkiDroid, AD (Education, 1M–5M; 66,513) 50.6% 49.0% 50.6% 54.3% (+3.7%)

AmazeFileManager, AFM (Tools, 100K–500K; 66,126) 39.6% 42.5% 45.0% 55.2% (+10.2%)
PocketHub, PH (Tools, 100K–500K; 47,946) 22.1% 19.1% 27.2% 31.4% (+4.2%)

AnyMemo, AM (Education, 100K–500K; 40,503) 57.5% 51.7% 64.3% 66.8% (+2.5%)
Hacker News Reader, HNR (News, 50K–100K; 38,315) 69.9% 66.2% 65.5% 71.2% (+1.3%)

CallMeter, CM (Tools, 1M–5M; 21,973) 54.0% 49.1% 58.5% 60.4% (+1.9%)
SimpleTask, ST (Productivity, 10K–50K; 20,980) 57.2% 57.2% 62.8% 70.2% (+7.4%)
Simple Draw, SD (Tools, 10K–50K; 18,685) 50.0% 51.3% 22.8% 26.8% (-24.5%)
Aard2, Aard (Books, 10K–50K; 9,622) 68.0% 64.3% 73.8% 77.6% (+3.8%)

World Clock, WC (Bussiness, 1M–5M; 7,181) 50.2% 50.8% 55.1% 58.0% (+2.9%)
CoolClock, CC (Tools, 10K–50K; 2,762) 75.4% 73.2% 78.0% 79.6% (+1.6%)
Alogcat, ALC (Tools, 100K–500K; 846) 49.1% 48.8% 49.1% 49.1% (0.0%)

Average 48.6% 47.6% 50.7% 55.3% (+4.6%)
1 Column Coverage trend plots the coverage trend of each tool. The red solid lines denote ComboDroidα , and dashed lines are
existing techniques. The detailed coverage trends are displayed in Figure 2. Number in a bracket is the coverage differences between
ComboDroidα and the best existing technique (Monkey, Sapienz, and APE).

Table 2: Evaluation results of ComboDroidα : bug manifesta-
tion

Bug ID Cause Discovered by

WP-10147 Infinite recursion APE, CDα

AP-1234 Atomicity violation CDα

AP-3195 Null pointer dereference all
K9-3308 Mismatched mime type Sapienz, CDα

AFM-1351 Null pointer dereference all
AFM-1402 Lifecycle eventmishandling APE, CDα

AM-480⋆ Lifecycle eventmishandling CDα

AM-503⋆ Null pointer dereference APE, CDα

CM-128⋆ Text input mishandling APE, CDα

SD-49 Miss-used local variables Monkey
Aard-90⋆ Null pointer dereference CDα

Aard-7 Null pointer dereference all

Monkey: 4 (33%); Sapienz: 4 (33%); APE: 7 (58%); CDα : 11 (92%)
1 Bug ID is the issue ID in the project’s GitHub repository. A starred
Bug ID⋆ denotes a previously unknown bug.

automated techniques. Even the the best automated technique so
far, ComboDroidα , covered 12.0% less code.

However, this gap is reduced to 3.2% when human knowledge is
integrated into our framework: use case combinations additionally
covered 13.2%more code thanmanual use cases only. ComboDroidβ
greatly amplified the use cases (covering 47.5% code, which is even
4.4% less than ComboDroidα ) to achieve a result nearly as good

Table 3: Evaluation results of ComboDroidβ : test coverage

Subject UC CDα ComboDroidβ Expert

WP (328K) 40.1% 36.1% 48.3% (+8.2%/+12.2%) 53.3% (+5.0%)
AP (262K) 65.4% 69.8% 75.2% (+9.8%/+5.4%) 78.6% (+3.4%)
K9 (160K) 38.5% 32.5% 50.3% (+11.8%/+17.8%) 53.7% (+3.4%)
ME (104K) 53.1% 56.3% 66.8% (+13.7%/+10.5%) 69.7% (+2.9%)
Wiki (93K) 37.3% 45.1% 46.0% (+8.7%/+0.9%) 49.6% (+3.6%)
AD (67K) 50.3% 54.3% 66.8% (+16.5%/+12.5%) 71.4% (+4.6%)
AFM (66K) 43.3% 55.2% 66.2% (+22.9%/+11%) 67.3% (+1.1%)
PH (48K) 31.5% 31.4% 39.2% (+7.7%/+7.8%) 45.3% (+6.1%)
AM (41K) 62.1% 66.8% 71.3% (+9.2%/+4.5%) 74.0% (+2.7%)
HNR (38K) 53.4% 71.2% 76.5% (+23.1%/+5.3%) 76.3% (-0.2%)

Average 47.5% 51.9% 60.7% (+13.2%/+8.8%) 63.9% (+3.2%)
1 The number in Column Subject is the app’s LoC. Columns UC, CDα ,
ComboDroidβ , and Expert display the code coverage of manual use
cases, ComboDroidα , ComboDroidβ , and the human expert, respec-
tively. The numbers in the brackets of ColumnComboDroidβ indicate
the coverage differences between ComboDroidβ and manual use cases
and ComboDroidα , respectively. The numbers in the brackets of Col-
umn Expert indicate the differences between the human expert and
ComboDroidβ .

as the human expert. Surprisingly, the ComboDroidβ even outper-
formed the human expert in Hacker News Reader. After analyzing
the code and coverage data, we found that Hacker News Reader
can enable data-preload of news articles in the settings. When
it is enabled, opening an article in an application-internal format
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Figure 3: Qualitative illustration of the state space explo-
ration strategies in evaluated techniques.

invokes additional code to process pre-loaded data. Such a subtle de-
pendency is missed by the human expert; on the other hand, though
also not covered by any single manual use case, ComboDroidβ
correctly pinpointed such a data dependency (in the depends-on
relation) and accordingly generated the use case combination.

Though in a preliminary stage, ComboDroidβ demonstrates the
potential of automatically leveraging human insight in comple-
menting and boosting automated techniques in testing Android
apps.

5.4 Discussions
5.4.1 Towards Thorough Automatic Testing of Android Apps. Fig-
ure 3 illustrates the search strategies of the evaluated techniques,
for giving a qualitatively explanation of why ComboDroidα out-
performed existing techniques.

Random-based techniques Monkey [26] and APE [28] at each
time delivers exactly one event to the app, and therefore are com-
pletely unaware of the remaining state space. Their limitations
are obvious: the search strategies are purely based on the noisy
exploration history. Such strategies may easily lose a deep (and
profitable) app state on random tries (e.g., pressing a button returns
to the app’s main menu).

Sapienz [43], though exploits motif sequences in a guided search,
fails to effectively assembling them. First, there is no rationale or
quality guarantee of the motif sequences—they are more or less
random event sequences. Second, mutation and crossover opera-
tions in the genetic search are inefficient in creating useful motif
sequence combos: randomly concatenating two event sequences
will mostly result in a useless combo. It is not surprise that Sapienz
even covered less code than Monkey in the long run. This result is
consistent with the existing studies [59].

In contrast, ComboDroidα generated both high-quality use cases
and their combos, and thus is highly effective in covering app
functionalities even if it delivers 60% less events.

Compared with manual testing, automatic testing is still far less
satisfactory: the human expert covered 12.0% more code on average
than ComboDroidα . The evaluation results of ComboDroidβ show
that this gap is mainly due to the quality of use cases. Our use
case extraction algorithm simply cannot “understand” the app’s
functions and semantics, however, meaningful use cases are quite
natural even for an app user. Machine learning over large-scale app
usage data set may be a promising direction to address this issue.

5.4.2 Leveraging Human Insights in Semi-Automatic Testing of An-
droid Apps. ComboDroidβ successfully “amplified” the manual use
cases to achieve a competitive coverage compared with a human
expert: adding a little more human aid boosts the testing thorough-
ness. This partially validated our intuition that humans are good at
sketching the major functionalities of the app; once such insights
are extracted (as use cases), tedious and repetitive work can be
offloaded to machines.

Therefore, ComboDroidβ , as a concept-proving prototype, opens
a new research direction towards the human-machine collaborative
testing of Android apps. Automatically generating meaningful (and
handy) suggestions (either by program analysis or machine learn-
ing) to help manual testers, developers, or even users to provide
better use cases is a rewarding future direction.

5.4.3 Threats to Validity. Bias in the selected subjects. The rep-
resentativeness of selected test subjects can affect the fidelity of our
conclusions. To mitigate this threat, we selected evaluation subjects
from various sources: popular benchmarks evaluated in existing
work plus random ones from GitHub. These subjects are (1) large in
size (around 76 KLoC on average), (2) well-maintained (containing
thousands of revisions and hundreds of issues on average), (3) pop-
ular (all have 10K+ downloads), and (4) diverse in categories. Since
ComboDroid consistently and significantly outperforms existing
techniques in all these benchmarks (except for Simple Draw due to
the implementation limitation), the conclusion that ComboDroidα
is more effective than existing techniques is evident.
Randomness and non-determinism. The evaluated techniques
(including ComboDroid) involve randomness, and subjects may be
non-deterministic. Therefore, for each subject and technique we
report the average result of three independent runs under the same
settings (the experiments cost over 2,400 CPU hours) to alleviate
this issue.
Human factors. The performance of human testers vary form
person to person. Therefore, the evaluation results of ComboDroidβ
only apply to that human testing expert. Since the post-graduate
Android testing/analysis expert knew us in advance, we are certain
that he/she tried the best to cover as much code as possible.

6 RELATEDWORK
Many technologies have been proposed for input generation for
Android app testing, including both fully automatic ones and semi-
automatic ones. Moreover, some technologies generating test inputs
for GUI/web testing also share similarities with ComboDroid.
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Fully automatic test input generation for Android apps. A
majority of existing technologies aim to fully automatically gener-
ate test inputs for Android apps. Many of them generate test inputs
for general testing purposes.

Random testing is a lightweight and practical approach in which
a large number of random events are quickly fed to an app, including
Monkey [26], DynoDroid [41], DroidFuzzer [64], IntentFuzzer [63],
etc.

Using a GUI model (either predefined or mined) may guide the
exploration of an app’s state space. Representative work includes
MobiGUITAR [3], SwiftHand [60], AMOLA [6], and the state-of-
the-art APE [28]. Such state space exploration is usually done by
a depth(breadth)-first search, e.g., A3E [5], GAT [61], and EHB-
Droid [55]. However, even if with a model, existing techniques fall
short on generating long (and meaningful) test inputs.

Search-based software engineering techniques can also be ap-
plied, such as EvoDroid [42] and Sapienz [43], which employ genetic
programming to evolve generated test inputs, or Stoat [56], which
constructs a stochastic model and uses MCMC [8] to guide the
generation. Moreover, some researchers propose to utilize machine
learning to guide the input generation [12, 27, 34]. Furthermore,
some pieces of work utilize symbolic or concolic execution to sys-
tematically generate test inputs for maximizing branch coverage,
including SIG-Droid [47], the technology proposed by Jensen et
al. [30], SynthesiSe [17], and DroidPF [7]. Existing search-based
techniques barely scale to large apps.

Finally, ComboDroid is not the first to introduce the idea of com-
bination in Android app testing. However, existing combinatorial-
based strategies [1, 48] concern only combinations of single events
and thus unable to generate long (and meaningful) test inputs.

In conclusion, all existing technologies fall short on generating
long (and meaningful) test inputs for practical apps, which are
essential in manifesting deep app states and revealing many non-
trivial bugs. The limitation of existing techniques motivated the
design of ComboDroid.

Semi-automatic test input generation forAndroid apps. Some
technologies are proposed to utilize human intelligence to improve
the quality of generated test inputs. For instance, Polariz [44]
extracts common event sequences from crowd-based testing to
enhance SAPIENZ. AppFlow [29] records short event sequences
provided by human, and utilizes machine learning to synthesize
long event sequences. Moreover, UGA [38] extends manual event
sequences exploring the skeleton of the app’s state space. Though
capable of utilizing human intelligence, Polariz and UGA have no
control over the quality of extracted manual event sequences. On
the other hand, AppFlow lacks an effective mechanism for reusing
the event sequences in testing.

Domain-specific test input generation forAndroid apps. Some
technologies aim to generate test inputs for certain testing domains
or for manifesting certain kind of bugs. For instance, EOEDroid [62]
utilizes symbolic execution to generate inputs to testing WebViews
of an app, while SnowDrop [69] aims to test background services of
an app. APEChecker [16] and AATT+ [36, 57] generate test inputs
to manifest potential concurrency bugs in Android apps. Moreover,
some technologies are proposed to detect energy inefficiency in An-
droid apps, Such as GreenDroid [40] and its extensions [37, 39, 58]

These techniques are generally orthogonal to ComboDroid. They
can be benefited by the high-quality test inputs generated by Com-
boDroid.

Test input generation for GUI/web testing. Some technologies
utilize iterative GUI exploration or program analysis to generate
test inputs for GUI/web testing. Some pieces of work [2, 18–21, 45,
66, 67] iteratively observes the execution of existing test inputs,
extracts additional knowledge (e.g., a refined model), and derives
new test inputs. For instance, Nguyen et al. [49] proposes the OEM*
paradigm that automatically identifies new test inputs during the
execution of existing ones, expands the current incomplete GUI
event model, and generates additional test inputs based on current
execution traces. Such iterative process resembles ComboDroid.
However, the knowledge extracted by these technologies mostly
comes from observations of GUI transitions, and other relations
between test inputs such as data dependency are often neglected.

On the other hand, some technologies utilize static analysis
on program code to find data dependencies between events, and
thus generate effective test inputs [4, 9, 14, 15, 50]. However, these
technologies cannot be directly applied for testing Android apps,
since Android apps are component-basedwith broken control-/data-
flow, and often invoke Android-specific APIs to access shared data,
e.g. SharedPreference.getBoolean.

In contrast, ComboDroid extracts knowledge of the app under
test from both GUI transitions and data dependencies, and uti-
lize lightweight static analysis on execution traces with Android-
specific APImodeling to infer depends-on relations between inputs.

7 CONCLUSION AND FUTUREWORK
Leveraging the insight that long, meaningful, and effective test
inputs are usually the concatenation of short event sequences for
manifesting a specific app functionality, this paper presents the
ComboDroid framework in which the Android app test input gen-
eration problem is decomposed into a feedback loop of use case
generation and use case combination. The evaluation results are
encouraging. The fully automatic ComboDroidα covered on aver-
age 4.6% more code than the best existing technique and revealed
four previously unknown bugs. With little human aid, the semi-
automatic ComboDroidβ achieved a comparable coverage (only
3.2% less on average) with a human testing expert.

ComboDroid sheds light on a new research direction for obtain-
ing high-quality test inputs, either fully automatic or with human
aid. Based on this proof-of-concept prototype, a diverse range of
technologies can be applied in the future enhancement of Combo-
Droid. Promising research includes exploiting machine learning in
use case mining, crowd-sourced use cases acquisition, and model
checking combos.
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