Empirical Software Engineering (2019) 24:3435-3483
https://doi.org/10.1007/510664-019-09715-8

®

DROIDLEAKS: a comprehensive database of resource Gheae
leaks in Android apps updates

Yepang Liu' © . Jue Wang? - Lili Wei? . Chang Xu? - Shing-Chi Cheung3 -
Tianyong Wu#> . Jun Yan*” . Jian Zhang*”

Published online: 16 May 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract

Resource leaks in Android apps are pervasive. They can cause serious performance degra-
dation and system crashes. In recent years, many resource leak detection techniques have
been proposed to help Android developers correctly manage system resources. Yet, there
exist no common databases of real-world bugs for effectively comparing such techniques
to understand their strengths and limitations. This paper describes our effort towards con-
structing such a bug database named DROIDLEAKS. To extract real resource leak bugs, we
mined 124,215 code revisions of 34 popular open-source Android apps. After automated
filtering and manual validation, we successfully found 292 fixed resource leak bugs, which
cover a diverse set of resource classes, from 32 analyzed apps. To understand these bugs,
we conducted an empirical study, which revealed the characteristics of resource leaks in
Android apps and common patterns of resource management mistakes made by develop-
ers. To further demonstrate the usefulness of our work, we evaluated eight resource leak
detectors from both academia and industry on DROIDLEAKS and performed a detailed anal-
ysis of their performance. We release DROIDLEAKS for public access to support future
research.

Keywords Android apps - Resource leak - Mining code repository - Bug database -
Fault pattern - Tool evaluation

1 Introduction

Mobile applications (or apps for short) such as those running on the Android platform are
gaining popularity in recent years. People rely on such apps for various daily activities such
as work, socializing, and entertainment. Unlike PC software, mobile apps run on resource-
constrained mobile devices and are required to consume computational resources (e.g.,
memory, battery power) more efficiently. However, many apps on the market fail to satisfy

Communicated by: David Lo, Meiyappan Nagappan, Sebastian Panichella and Fabio Palomba

< Yepang Liu
liuyp1 @sustech.edu.cn

Extended author information available on the last page of the article.

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-019-09715-8&domain=pdf
http://orcid.org/0000-0001-8147-8126
mailto: liuyp1@sustech.edu.cn

3436 Empirical Software Engineering (2019) 24:3435-3483

this non-functional requirement. They often do not properly release the acquired computa-
tional resources after use (Guo et al. 2013). Such software defects are called resource leaks.
They can gradually deplete the finite computational resources in mobile devices at runtime,
leading to severe performance degradation and system crashes.

Ensuring proper resource usage in a program is a non-trivial task for developers (Torlak
and Chandra 2010). Over the years, researchers have proposed various techniques to help
developers correctly manage resources used by their apps, including static analyzers (e.g.,
Guo et al. 2013, Liu et al. 2016b), verification (e.g., Vekris et al. 2012, Liu et al. 2014) and
testing techniques (e.g., Yan et al. 2013, Wu et al. 2018). Besides, industrial tools such as
Infer (Facebook 2018) and the built-in checkers in Android Studio (Google 2018b) can also
help pinpoint resource leaks in the code of mobile apps.

Despite the tremendous efforts towards automated resource management and leak detec-
tion, there does not exist a widely-recognized database of real-world resource leak bugs in
mobile apps. Such bug databases are essential as they can provide a reliable basis to eval-
uate and compare various resource management and leak detection techniques. Due to the
lack of such bug databases, existing techniques such as Relda2 (Wu et al. 2016) can only
be evaluated on a small set of open-source or commercial apps. The detected bugs were
also rarely confirmed by the original developers. As a result, it is hard to (1) fully repro-
duce existing studies’ results to assess the effectiveness of the proposed techniques in real
settings and (2) quantitatively compare such techniques with a fair basis to understand their
strengths and limitations. In addition, existing work only studied limited types of resource
leaks in Android apps (e.g., those causing energy waste). To the best of our knowledge,
there does not exist a comprehensive database of resource leak bugs in mobile apps.

In this work, we make an initial contribution towards benchmarking resource leak bugs
for mobile apps and focus on the Android platform. To collect real resource leak bugs in
Android apps, we investigated 34 diverse and popular open-source Android apps indexed by
F-Droid (2018). A straightforward approach for bug collection is to search these apps’ issue
tracking systems. However, in practice, software bugs could be fixed without being properly
documented and this approach would miss many such bugs. In order to address the problem,
we searched for bugs by examining the revision history of the apps. Our observation is that
the patches to fix resource leak bugs (1) usually demonstrate patterns (e.g., developers often
add code to invoke certain APIs to release the acquired resources) and (2) are eventually
committed to the apps’ code repository. Therefore, we can mine the apps’ code repository
for bug collection. To construct the bug database, we built a tool, which automatically mined
124,215 code revisions of the 34 apps. After automated filtering and manual validation, we
successfully located 292 fixed resource leak bugs in 32 apps, of which only 14 (4.8% =
14/292) were documented in the corresponding apps’ issue tracking system. We call this
bug database DROIDLEAKS and collected the following data for each bug: (1) the type of the
leaked system resource (in terms of Java classes such as android.database. Cursor),
(2) the buggy code, (3) the bug-fixing patches, and (4) the bug report (if any).

To understand the characteristics of these bugs, we performed an empirical study on
DROIDLEAKS and made several interesting observations. For example, developers can
easily make resource management mistakes when the apps have complex lifecycles or
frequently interact with the running environment. We also found three common patterns
of resource management mistakes (e.g., API misuses and losing references to resource
objects). Moreover, we observed that bugs in DROIDLEAKS are representative and compre-
hensive as they cover the types of resource leak bugs studied by the existing work (Guo
et al. 2013, Liu et al. 2016b, Vekris et al. 2012, Wu et al. 2016), and additionally con-
tain many more types. Such findings suggest that our work not only can provide practical

@ Springer

Empirical Software Engineering (2019) 24:3435-3483 3437

programming guidance to Android developers (e.g., the bugs and patches in DROIDLEAKS
can be used for training or educational purposes) but also can support follow-up research
on developing or evaluating automated resource leak bug finding and patching techniques.
As an example, we implemented a static checker to detect a common misuse of Android
database APIs and helped developers find 17 previously-unknown resource leaks in their
Android apps, of which 16 were fixed later (see Section 6.2).

To further demonstrate the usefulness of DROIDLEAKS, we experimentally evaluated eight
existing resource leak detectors for Android apps using it. These detectors are freely acces-
sible to Android developers. Some are research prototypes, while others are of industrial
strength, e.g., Facebook Infer. All these detectors perform static analysis for bug detection. We
did not evaluate dynamic analysis techniques due to the lack of test cases to run the Android
apps. The results show that none of the existing detectors support detecting all types
of resource leaks indexed by DROIDLEAKS. These detectors also suffer from high false
negative or false positive rates, which would significantly hinder their adoption. To help
improve the detectors, we provide a detailed analysis of their limitations with real-world
bug examples in Section 5.4. In summary, we make three major contributions in this paper:

— We present DROIDLEAKS, a large database of real resource leak bugs in popular open-
source Android apps, and describe its construction process in detail. DROIDLEAKS
currently features 292 bugs covering 33 different resource classes. To the best of our
knowledge, DROIDLEAKS is the first of its kind and we release it to facilitate future
research (https://zenodo.org/record/2589909).

— We performed an empirical study of the bugs in DROIDLEAKS. The study revealed char-
acteristics of resource leaks in Android apps and found common patterns of resource
management mistakes made by Android developers.

— We evaluated eight existing resource leak detectors for Android apps with DROI-
DLEAKS and provide a detailed analysis of their strengths and weaknesses, which can
shed light on future research to improve these detectors.

Paper Organization Section 2 introduces the preliminaries of Android apps and resource
leaks. Section 3 presents our approach to constructing DROIDLEAKS. Section 4 discusses
the characteristics of bugs in DROIDLEAKS. Section 5 evaluates existing resource leak
detectors for Android apps. Section 6 discusses threats to validity, limitations of the work,
the usefulness of DROIDLEAKS, and implications on future techniques. Section 7 reviews
related work and Section 8 concludes this paper.

2 Background

Android is a Linux-based open-source mobile operating system. Android apps are mostly
written in Java and compiled to Dalvik bytecode, which are then encapsulated into Android
app package files (i.e., . apk files) for distribution and installation.

App Components and Event Handlers Android apps are event-driven programs. An app
usually consists of four types of components: (1) activities contain graphical user interfaces
(GUIs) for user interactions, (2) services run in background for long-running operations, (3)
broadcast receivers respond to system-wide broadcast messages, and (4) content providers
manage shared app data for queries. Each app component can define and register a set of
event handlers, i.e., callback methods that will be invoked by the Android OS when certain

@ Springer

https://zenodo.org/record/2589909

3438 Empirical Software Engineering (2019) 24:3435-3483

PowerManager pm = (PowerManager) getSystemService (POWER SERVICE) ;
WakeLock wl = pm.newWakeLock (PARTIAL WAKE LOCK, “lockTag”);
wl.acquire(); //acquire a wake lock

en the wake lock is held

//performing cri computat

g w N

wl.release(); //release the wake lock

Listing 1 Example code for using wake locks

events occur. Developers implement the main logic and functionalities of an app in these
event handlers.

System Resource Management In order to acquire system resources for computation,
Android apps need to invoke designated resource-acquiring APIs provided by the Android
SDK. When the computation completes, the apps should release the acquired resources by
invoking the resource-releasing APIs. For example, wake lock is a critical system resource
for power control on Android devices. Listing 1 shows how an app can acquire a partial
wake lock by calling the WakeLock.acquire () API (Line 3). The partial wake lock
will keep CPU running to protect the critical computation from being disrupted by device
sleeping. When the critical computation completes, the app releases the wake lock by calling
the WakeLock.release () API (Line 5).

Resource Leak For correct resource management, developers should ensure that acquired
resources are released on every possible program execution path, including exceptional
ones. Particularly, for reference-counted resources (e.g., in Android, wake locks are by
default reference-counted), each call to the resource-acquiring API must be balanced by
an equal number of calls to the resource-releasing APL! Otherwise, the resources will be
leaked (e.g., when developers forget Line 5 of Listing 1), which can cause undesirable
consequences such as performance degradation and system crashes. In practice, resource
management tasks are error-prone (Torlak and Chandra 2010, Wu et al. 2016). The complex
and implicit control flows among Android event handlers further complicate the tasks, giv-
ing rise to various resource leak bugs (see Listings 2 and 3 for examples).

3 Collecting Resource Leak Bugs

This section presents our semi-automated approach for constructing the DROIDLEAKS bug
database.

3.1 Selecting Open-Source App Subjects

To construct DROIDLEAKS, we started by selecting representative open-source Android
apps for investigation. F-Droid (F-Droid 2018) is a well-known open-source Android app
database. It indexed 2,146 apps of different maturity levels at our study time, of which 1,475
have an accessible source code repository and are hosted on GitHub, a leading open-source
project hosting site.” To search for suitable app subjects, we defined the following four
criteria: (1) a selected app should have more than 10,000 downloads on the market (the app

Uhttps://developer.android.com/reference/android/os/PowerManager. WakeLock
2https://github.com/

@ Springer

https://developer.android.com/reference/android/os/PowerManager.WakeLock
https://github.com/

Empirical Software Engineering (2019) 24:3435-3483 3439

//FBReader revision 7907a9al3b
public class LibraryService extends Service ({
public void onCreate() {
//some set up work and open database
myDatabase = SQLiteBooksDatabase.Instance(..);
}
public void onDestroy () {
//some tear down work
+ myDatabase.close();
}
}

O W o Joy Udbd Wb

=

Listing 2 A resource leak involving complex app component lifecycle

is popular), (2) the app should also have a public issue tracking system (bugs are traceable),
(3) the app’s code repository should contain over 100 code revisions (the app is actively-
maintained), and (4) the app should contain at least 1,000 lines of Java source code (the app
is non-trivial). These four criteria were chosen to select non-trivial real-world apps and avoid
toy-example projects. Our intuition is three-fold. First, if an app is frequently downloaded
and has a large user base, users might have already encountered and reported various quality
issues to the app’s developers. The app is likely of a higher quality if developers have reacted
to such user feedback. Second, if an app has a repository with a large number of revisions,
the app is likely to be mature and more optimized than others. Third, if an app has at least
thousands of lines of code, it is more likely that the app might have encountered performance
issues than those smaller-scale ones.

//IRCCloud revision d7a44le3a6

1. public class ImageViewerActivity {
2. private MediaPlayer player;
3. private void loadVideo (String url) {
4. player = new MediaPlayer () ;
5. final SurfaceView v = (SufaceView) findViewById(..);
6. v.getHolder.addCallback (new SufaceHolder.Callback() {
7. public void surfaceCreated(..) {
8. Ce
9. player.prepare() ;
10. player.start();
11. }
12. public void surfaceDestroyed(..) {
13. + if (player != null) {
14. + player.stop();
15. + player.release () ;
l6. + }
17. }
18. }
19. }
20. public void onDestroy () {
21. super.onDestroy () ;
22. if (player != null) ({
23. player.release();
24. }
25. }
26. }

Listing3 A resource leak involving complex widget lifecycle

@ Springer

Empirical Software Engineering (2019) 24:3435-3483

3440

4 4! 00¥ A6°S 2100S = 3001 £y [0 % [9ABLL 1IBILINSO
[4 123 188°1 A8l 2001 = 30S 6'¢ uonesiaeN 29 sdey proiquso
€l vel 9¢€°6C ALLET NOT —INS (44 uonesiaeN 29 sdey puewisQ
4 (4% 960°1 ATl INT =008 I'v [BO0T] %9 [PABLL 1oyoeLL, S4D uedo
0 6 66¢ 2169 INOT — NS (24 Kanonpoig 1a3euey d[1d 10
£ 86 Ter9 S8L NOT — NS (44 uonesIunuIton "IN 6731
I 9¢l 998°1 D (233 2001 —0S (24 uonesiunuon PROIDDAI
4 [4 96¢ p: (17 M001 — 08 144 SOUIZESEIN 79 SMON 19peay SMIN IoxoeH
S I 6L1 A NOS — INOI 4 S[0QL, Joyednuayiny 2[5000
8 9L S00°6 A6°0L INOS — INOT Sy SIVURIRJIY % sjood Topeaydd
8 06 8¢€°6 ATTS NS —INT vy jusureIuy 093:9

I 81 69T°1 A88I A00T = M0S Le [BO0T] %9 [9ABLL $102159[94D
L [4% 8LL1 2061 NS — NI ey UOHESTINUItIOT) apdwigdis)
S (44 671 A9°LI NS —INT oY uonesIunuIton jogioauuoy
[43 8¢l 906°C ATLE INT — 31008 (7 uonesIunuwon 2IndagIeyD
1 Le €9C°C ASEl NS —INT 4 S[oQL, IO1NIIED
4 [4Y Ty 2081 NS —INT oy QoueuL] 19[[eMm utopg
€ 194 61T'¢ A9°01 INOOS — INOOT I'v Surddoys Isuuesg apooreq
9 S 20Tl A6'CC 2100S = 3001 I'v douelL] proi@yueq
01 69 99¢Y A0y 2100S = 3001 vy uonesunuIwon DdV
4 9y €08C ATST NS —INT 144 S[OOL preoqAayjosAuy
8¢ £CC €0€°8 AELY NS —INT % uoneonpy proiguuy
s3nq # SUOISIAQI JUNSAIANUL # SUOISIAQI [B10) # (eaer) DOIS speojumo Suney K103912) Qwreu ddy

s3nq Yeo[901n0sa1 112y} pue s1aalqns dde somos-uadQ | d|qeL

pringer

NS

3441

Empirical Software Engineering (2019) 24:3435-3483

xipuadde oy ur punoj oq ued saroysodar apood sdde ayy 01 syur oy, (%) ¢£107 ‘IsnSny ur pajepdn jse[a1om pue 91 (¢
19q030() UI paureiqo A[[enIur 91am 9[qe) 9y} ur eyep Y, (€) 2103 Ae[q 9[S000) oy woIy viep patoprsuod A[uo am ‘speoumop dde 104 () ‘000°000°T = INT PU® 000°T = M1 (1)

°6¢ 1181 SITyel [eI0L
[4 9 9Tl AT8E NS —INT 'y uonestunuIo’) =9qQqex
6¢ 91 SO8pI Mo6vL NOT —INS <y [e150S SSAIJPIOM
0 01 879°1 vy 3100S — 31001 144 uonesunNwIwon SINS9PeM
4! 09 18¥°¢ AT81 INOOS — INOOT 144 SIONPH 29 SI9KB|J 0dPIA PloIpuy-371A
% 91 86 JALse 310§ — 301 Le uonesunuIwo? Ipryeys)

C 8 Ly ST 2100€ — 31001 14 s[ooL proJpsuelf,

C I SE0°T ALTT NOS —INOT 144 S[ooL JI0je[nuIy [eUIuLI],
11 LL TLST A0 Iy 2100S — 1001 (4% [e100S 1odgomg
[4 i4! €18 ALy NS —INT 6¢ uonestunuio’ PIOIQSINS

I L £6C ASYC NS —INT oy uonesIunuIion proiqdig
61 Ly 095°1 L1T INOS — INOT LY SOOURIRJRY % sy00g ploIpuy 10J ueIng)
8 8 1Sy A9'1€ 3100S — 31001 9'¢ Ayanonpoiq pno[jyumo
s3nq # SUOISIAQI SUIISAIAUI # SUOISIAQI [B)0) # (eaer) DOIS speojumo Suney K103918) ouwreu ddy

(panunuoo) | 3jqeL

pringer

N

3442 Empirical Software Engineering (2019) 24:3435-3483

—__= * Commit logs 1,811 @
Code | « Code diffs 4

2 292 real

commits f resource
_ > RN
Repos \, L ! leak bugs
34 Android apps Keyword search Manual validation

Fig. 1 Resource leak bug collection process

170 of the 1,475 apps hosted on GitHub satisfied the above constraints. From them we
randomly selected 34 (20%) apps as the subjects for our study. Table 1 provides their basic
information, including: (1) the app name, (2) category, (3) user rating on the Google Play
store (5.0 is the highest rating), (4) number of downloads on the Google Play store, (5) app
size (lines of Java source code), and (6) number of code revisions. As we can see, our sub-
jects are diverse (covering 14 different app categories), of different sizes (from 3.3 KLOC
to 137.7 KLOC with an average of 36.3 KLOC), popular (with millions of downloads), and
well-maintained (with 3,653 code revisions on average).

3.2 Keyword Search

In order to ensure the quality of DROIDLEAKS bug database, we decided only to include
those bugs that have already been confirmed and fixed by developers based on a common-
sense assumption: if developers take actions to fix an issue, it is likely that the issue is worth
fixing and the actions help improve app quality. To collect fixed resource leak bugs, we
mined the code repositories of the 34 app subjects. Figure 1 illustrates the overall process,
which is semi-automated and contains two major steps: (1) keyword search, and (2) manual
validation. This subsection introduces the first step and the next subsection introduces the
second step.

The purpose of keyword search is to find interesting code revisions (or commits) that
contain fixes to resource leak bugs. A code repository may contain a large number of code
revisions. When committing each code revision, developers usually provide a short natural
language message to summarize their changes, a.k.a. the commit log or commit message.
The version control systems (e.g., Git) can help compute and visualize the differences
between a committed revision and its parent revision(s), a.k.a. the code diff. When mak-
ing commits, developers may mention that they fixed certain resource leaks in the commit
logs. Since fixing resource leaks typically requires adding code to invoke designated APIs
to release resources, we defined two sets of keywords to search for interesting commit logs
and code diffs, respectively. The keywords are listed in Tables 2 and 3. The keywords in
Table 3 are formulated from the existing work for Android resource leak detection (Wu et
al. 2016), which provides a list of frequently-used resource acquiring and releasing APIs.
The keywords in Table 2 are general natural language words related to resource manage-
ment.> Such natural language keywords are also needed due to two reasons. First, there is
no guarantee that the set of resource releasing APIs (Table 3) provided by existing work
is complete. Second, developers may wrap the resource releasing API calls in self-defined
methods and invoke them to release resources.

3We do not claim the completeness of our keyword set. With the current keywords, we successfully located
a large number of real resource leak bugs in the code repositories of 32 of our 34 app subjects, which are
sufficient for our later studies.

@ Springer

Empirical Software Engineering (2019) 24:3435-3483 3443

Table2 Keywords for mining
commit logs leak leakage release recycle cancel

unload unlock unmount unregister close

To search for interesting commit logs in an app’s code repository, we first trans-
formed all commit logs into a canonical form that contains only lower case letters and
no punctuation marks. We then removed certain patterns of phrases, which accidentally
include our keywords but are irrelevant to resource leak bugs, from each commit log. For
instance, we removed the phrases that match these two regular expressions: “release

(vlver) 2 [0-91+ (\.[0-9]1+) +” and “close issue #7?[0-9]+” as phrases such
as “release v1.0.1” and “close issue #168” frequently occur in commit logs.* Next, we split
each processed commit log into a vector of words and stemmed each word into its root form.
Stemming (Lovins 1968) is necessary because the natural language words may be in differ-
ent forms. For example, the verb “release” may be in its gerund form “releasing” in certain
commit logs and we need to stem it into its root from “releas”. After stemming, we applied
the stemmed form of the keywords in Table 2 for searching.

To search for interesting code diffs, we looked for those diffs that contain lines (1) start-
ing with the “4” symbol (representing code additions), and (2) containing a keyword from
Table 3 (for matching resource-releasing API calls).

With the above two searching steps, we obtained a set of code revisions that contain either
interesting commit logs or interesting code diffs. Column 7 of Table 1 lists the number of
such code revisions we found for each of the 34 open-source app subjects.

3.3 Manual Validation of the Collected Bugs

In total, keyword search located 1,811 interesting code revisions. We then carefully inves-
tigated each of them to check whether it fixes resource leaks by understanding the
relevant code, the purpose of code changes, and referring to the relevant API specifi-
cations (Android API Guides 2018, Java API Specification 2018). During the checking,
we also analyzed bug reports (if any), commit logs, and developer comments. The pro-
cess involved four people. First, two authors performed independent checking of each
code revision and discussed with each other to reach consensus once any disagreement
occurred. The other two authors then further checked the results for consistency. With
such manual validation, we successfully found 292 resource leak bugs from 171 code
revisions (some code revisions fix multiple resource leaks). The remaining code revi-
sions are irrelevant but retrieved because their commit logs accidentally contain our search
keywords or their code diffs contain the addition of resource-releasing API calls for
other purposes (e.g., for refactoring or when new code that uses and correctly manages
resources is introduced). We observed that 70 of the 292 bugs were found due to our
code diff analysis. For example, in WordPress revision 64d7687c23,5 which fixes a
leak of database cursor, the commit log only mentions “fixing bugs for RC build”, but
the code diffs contain the added code “cursor.close ()”. This bug can be found by
analyzing code diffs but cannot be found by commit log analysis as the message is too

“4In our mining scripts, we defined 32 removal patterns after randomly sampling 1,000+ commit logs. We
skip the details in this paper.

3For all open-source projects referenced in this paper, we provide the links to their code repository in Table 10
of the Appendix. The readers can find the discussed revisions in the code repository.

@ Springer

3444 Empirical Software Engineering (2019) 24:3435-3483

Table 3 Keywords for mining code diffs

.close(.release (.removeUpdates (
.unlock (.stop (.abandonAudioFocus (
.cancel (.disableNetwork (.stopPreview (
.stopFaceDetection (.unregisterListener (

general. We also observed that 18 of the 292 bugs were found due to our commit log
analysis. For example, in AnkiDroid revision b27£423£73, the code diffs contain the
added code “closeOpenedDeck () ” to close an opened database. The method will trig-
ger a chain of method calls until reaching the call to the standard SQLiteDatabase
closing API in com.ichi2.anki.AnkiDDb class. This bug cannot be found by ana-
lyzing only code diffs, but the commit log of the revision mentions “close database
properly to avoid errors”. Therefore, the bug can be found by our commit log analysis. The
remaining 204 of the 292 bugs can be found by either code diff analysis or commit log
analysis.

The last column of Table 1 lists the number of real resource leak bugs we found for
each app subject. As we can see, 32 of the 34 randomly-selected open-source Android apps
contain snapshots where resources are not properly released after use, which suggests the
pervasiveness of resource leak bugs in real-world Android apps.® Then for each bug, we
further collected the following data to construct DROIDLEAKS: (1) the buggy code, (2) the
bug-fixing patch, and (3) the bug report if we can find it in the issue tracking system of the
concerned app.

4 Characteristics of Collected Resource Leak Bugs

To understand the characteristics of the bugs in DROIDLEAKS, we conducted an empirical
study. We aim to answer the following three research questions:

— RQ1 (Resource types and consequence of leaks): What types of system resources (in
terms of Java classes) are leaked due to these bugs? What are the consequences of these
resource leaks? Are the leaked resources specific to the Android platform?

— RQ2 (Resource leak extent): Did the developers completely forget to release the
concerned system resources on all program execution paths or only forget to release
the resources on certain program execution paths or exceptional paths? Does the
concerned resource escape local context?

— RQ3 (Common fault patterns): Are there common patterns of faults made by
developers, which can result in resource leaks?

To answer these questions, we carefully studied each bug in DROIDLEAKS and examined
the relevant code (e.g., patches), data (e.g., bug reports), and API specifications (Android
API Guides 2018, Java API Specification 2018). This section reports our observations.

SNote that it is hard to confirm whether these snapshots had been released to market and affected users due
to the lack of data. There is a possibility that the “fixes” of resource leak bugs found by our approach were
actually committed to the code repositories to address the warnings generated by IDEs or issues noticed by
developers themselves instead of patching bugs observed by the users.

@ Springer

Empirical Software Engineering (2019) 24:3435-3483 3445

4.1 RQ1:Resource Types and Consequence of Leaks

RQ1 aims to identify the resource classes involved in the resource leak bugs in Android apps
and understand the consequences of the bugs. This subsection presents how we analyzed
our dataset to investigate RQ1 and discusses our major findings.

4.1.1 Resource Types

To identify the concerned resource classes, we studied the code related to each bug in DROI-
DLEAKS. Overall, we found that the 292 bugs in DROIDLEAKS cover 33 different resource
classes listed in Table 4. As we can see from the table, 61.3% of the bugs (179 of 292)
concern resource classes that are specific to the Android platform. For instance, the SQLite
database is widely-used in Android apps and we found 143 bugs in DROIDLEAKS leak-
ing SQLite database cursors (see Listing 6 for examples). The remaining 113 bugs (38.7%)
leak general Java platform resources, of which I/O streams account for the majority. It is
not surprising that the percentage of Java platform resource leaks is high (nearly 40%) since
the majority of Android apps are implemented in Java and can use various Java libraries to
leverage system resources for computational purposes.

Table 5 lists the types of resources studied by existing Android app resource leak analysis
work. As the table shows, existing work only studied the resource leaks related to a lim-
ited number of resource classes (e.g., Wu et al. 2016 studied leaks related to eight resource
classes). DROIDLEAKS contains resource leak bugs related to 33 different resource classes,
11 of which are specific to the Android platform. As a comparison, none of the existing
work studied leaks related to such a large number of diversified resource classes. There-
fore, we can see that DROIDLEAKS is large-scale. It can serve as a benchmark to evaluate
resource leak detection techniques as we will show in Section 5. However, since DROI-
DLEAKS is constructed by analyzing the repositories of 34 open-source Android apps, it
does not contain leaks related to all possible resource classes. For example, three resource
classes studied by multiple pieces of existing work (i.e., android.hardware. Sensor,
android.media.MediaRecorder, and android.media.AudioManager) are
not covered by the current version of DROIDLEAKS. In the future, we will analyze more
Android apps and further improve the completeness and diversity of the resource leak bugs
in DROIDLEAKS.

4.1.2 Consequence of Resource Leaks

Resource leaks are generally considered as non-functional issues that do not cause imme-
diate fail-stop consequences such as app crashes. To understand the consequences of the
bugs in DROIDLEAKS, we studied various data sources including the bug reports, commit
logs of the bug-fixing revisions, developers’ comments in the code, and API specifications
(Android API Guides 2018, Java API Specifications 2018). We observed three types of
major consequences:

— Most of the resource leak bugs (276 of 292, marked with “I”” in Table 4) mainly lead to
resource occupation and memory waste, which can gradually slow down the whole sys-
tem. For example, an android.database.Cursor object has native file handles
behind it because the SQLite database uses indexed files for providing query func-
tions. Forgetting to close a cursor object will prevent its associated file handles from
being released as well as causing memory waste. While the consequence of a single

@ Springer

Empirical Software Engineering (2019) 24:3435-3483

3446

()®so1o weaxjsaindinopaiaiing ()<3tutr>- wesxlsindianopaisiing)¢ (I) wesxjsandanppexsijng oT eael
(1) 3ustrodasHiTneisd
()®soTo 3usT1dd33H3ITNEI=QA ()<3tur>-3ust1dd3lH3l[neI=da D+ ‘juatTo - Tdwt - d33y-syoede-bio
()osoTo weax3sandurI=lTTd () <3aTutr>-wesax3sindurIslTTd (VXS (I) wesx3sandulxelTTd OT eael
()°oso1o wesax3lsandang () <aTur>-wesx3sandano ©)9 (I) wesx3sandanp ot -eael
()osoTo wesx3sIndiInoIs3TTa ()<3Tutr> wesx353IndIanNOI=SITTd @6 (I) wesx3saIndianOIs3 [T OT eael
()os0oT0 " IopeaypaIaiIng ()<3TUuT> " IopeSYpaIaiIng @6 (I) xopesypsising oOT eael
()oso1o weax3sandinoa1T4d ()<3tutr> weaxlsandinpaTTd @ o1 (I) wesx3s3IndanOSTTd OT eael
()osoTo wesx3zsanduraTTd ()<3Ttutr> wesaxlsindursTTd © 7z (1) wesx3lsanduIlsTTd OT eael
()eosoTo weaxasaindul 5 ()<atur>-wesxlsandul 92) ¢ (I) wesx3sandul ot eael
$901nosar1 woje[d eaef [eroudn)
()osesaTax exswe) () usdo - exsued M1 (III) exswe) axempIey pIoipue
()o10Aoax" ToDaeg ()uteaqo- Teoxed 1 (I) T°paed- so pToIpue
()osoTo-xo3draossgsTTATS0aRd ()usdo-xo03dTaosa@STTATo90IRd M1 (I) x03dTaDsSS@STTATSDIed SO pPTOIpUE
()oT120ADSI JUSAHUOTION () UTe3qo " JUSAHUOT IO M1 (I) JUSAHUOTIOW MSTA PTOIPUE
()®s0T2 qUaTTDAIFHPTOIPUY () SDURISUIMSU" JUSTTDAIIHPTOIPUY e (1) 3ustrddaaHpTozpuy - d3ljy-3su’proIpue
() s@3epdnasowaa () sezepdpuoTienorlseanbax
* I9beUBNUOT3ED0T * I9beUBNUOT3eD0T @z (II) ISUS23STITUOTIEDOT UOTIEDOT PTOIpUE
()°8eaTax " {DPOTTITM ()@xTNnboe 3DOTTITM (07 (II) MPOTTITM I9BPUBNTITM TITM JoU pTOIpUE
()doas - askeTdeTpsn ()3xeas - x0hkeTdeTpan ©)s (I) I9AeTdeTpSn eTpaw pToIpue
() osesaTax yoorraxem ()sx1tnboe yoorTaxem (®)8 (II) oorIayeM’ I9beuepIsamod - SO pToIpue
()osoT0 " oseqeledalTIds () eseqejequado - sseqeledslTI0S ®) €1 (I) sseqeledslTIds =1T11bs sseqejep pToapue
()9soTo " x08IND q()A1onb-oseqeleasltIos (L7) ¢F1 (I) x0sanD-oseqelep’proIpue
so01nosa1 utioped proipuy
1dV Surses[ar 901nosa o[dwexy 1dV Suunboe soinosar ojdwexy s3nq # (5[e9 Jo 2ouanbosuod) sseo eael pauraduo))

pringer

SMVATAION(UT SNQ Yea[90INOSAI Y} JO UOTIBWIOJU] { d|qel

NS

3447

Empirical Software Engineering (2019) 24:3435-3483

pringer

N

« () <2ATUT>, SESISSL[D 9IN0SAI JO SI03ONISU0D d1[qnd J0Uap A , SIPIND [V PIOIpUY Ul
punoj Ajenbrun 9q ued ‘sadA) 1ojowrered poyjow pue soweu sse[o payjifenb A[ny Surpnpour ‘uoneulojur [y o[dwo)) -dweu poyjow e pue dweu sse[o ajdwis € oapraoid Ajuo
om ‘9rdwexa [dv yoes Joj ‘adeds pajw[03 an(4 (T UONIAS 335) 19YOLIQ Sy} UI IXIUOD [EI0] 3y} $adeIs A0INOSII PIUIOUOD Y} 1Y SISLD JO Jaquinu 3y 110dar oM

() ®SOTD ISTPURHSTTA () <3TUT> ISTPUCHSTTA (M1 (I) ISTPUEHSTTA butbbor TTan"eael
()®s0OTD " 1933WIOA () <3TUT> " I933°WIOH 1 (I) ax933ewxod TTIn eael
() 2soTo aopeayueaxjsindur () <3TUT> I9peoywesijsindur M1 (I) xeopesywesxlzsindul ot eael
()@so1o weaxjsandanoeieq () <3atutr> weaxlsandanoeleq 1 (1) wesxisaindanoeleq ot -eael
()oso1o wesaxjsandanopadId () <aTut>-weaxlsaindinopadid @ (1) wesaxasandanpopadrd-oT - eael
()@soTo weaxjzsandanoanalgo () <aTutr>-wesax3lsandinpio=Lqo 0z (I) wesxasandanpioalgo o1 -eael
()osoTo weaxjsandurioslgo () <aTutr>-wesaxlsandurinslgo 0z (I) wesxasandurionslgo-oT-eael
() ®soT0 " x2uuLedS () <3TUT> I2UUEDS (VK4 (I) xsuueds ' TTIn eael
() ®s0TD " 3383(D0g () <3TUuT>" 393008 e (I) 393pos-33u-eael
()®so1n x93 Tamwesxdsandino () <3TUuT> I93TaIMwesxlsaIndino (VK4 (1) xo3TamweszlzsaindinQ- ot -eael
() @so1o ‘weaxjsaindinolerayslilkg () <3atut> weaxlsaindinplerayslig 0z (1) wesxlsandanpAexayealAg- ot eael
()®80TD " I93TIMPRISIING () <3TUT>"I93TIMPSILIING (K4 (I) x93TIMpaxa3Ing Ot eael
() oseaTax - sxoydewsas () ®atnboe - sxoydewss ©¢ (I11) ®sxoydewss jusIInduod " TTIN eael

1dV Sursesjar a01nosa1 ojdwexyg IdV Suumboe soinosar sjdwexyg s3nq # (5[e9] Jo 2ouanbasuoo) sse[o eael pauIadUO)

(panunuod)

volqeL

Empirical Software Engineering (2019) 24:3435-3483

3448

SAVHTAIOY JO UOISIIA JUALIND YY) UI PAISA0D JOU 2Je SASSB[D 93IN0SAT paulfrepun)

N pesaayl - buet-eael

2 IOJeIqIA SO proipue

2 2 IobeURNOTIPNY " BTPSW PTOIPUER

>

I923depyyloolianid Yloolianq pIToIpue

A Ioputg SO proipue

2 dewatg- soTtydeib prtoipue

IopIODOSJeTIPoN eTpaul - proipue

IOSUSS ' oIeMpIey pToJIpue

BISWED * 9IBMPIEY PTOIpPUER

SO S S

I9U93STTUOTIEDOT " UOTIeDOT " PTOIpUER

SN S S S

SDOTTITM IobRUBWTITM TFTM 38U " pTOIpUE

I0AeTdeTPaN BTpaW pTOIpULR

SN N S SS

>

s P 2 JDOTOYEM " ISBRURNISMOJ " SO " PTOIpUER

2 I0SINnD9seqelep proipue

810¢ 810C 910T 10T £10¢ (41 cloc
‘Te 10 9a[1oueqg Te 19 np Te 10 np\ Te 1o nry Te 19 Uex Te 19 SLIYA. Te 10 Yeyred sse[d eAel pauIaouo))

sIsATeue Yeo[90mosa1 dde proIpuy uo yI1om 3unsIxa Aq parpnis saoInosal Jo sadAl, ¢ ajqel

pringer

NS

Empirical Software Engineering (2019) 24:3435-3483 3449

instance of such resource leak bugs may not seem serious, in cases where certain oper-
ations that leak resources are repeatedly performed or apps run on low-end devices,
users can experience obvious system slowdowns or even crashes (e.g., due to the out-of-
memory exceptions). For example, after fixing multiple resource leak bugs in revision
25256904da, the developers of AnkiDroid left the following commit log:

Surround all cursor statements with try...finally to make sure that the cursor is
closed at all times, even when an unexpected exception occurs. If a cursor is
not closed, java will throw an exception, but it is silently (well, it can be seen
in the log) discarded and does not cause a force close. However, it does cause a
noticeable slow-down in the execution

— The second common consequence is energy waste, concerning 12 bugs in DROID-
LEAKS (marked with “I” in Table 4). These bugs leak wake lock, Wi-Fi lock, and
sensor-related resources, which are specific to the Android platform. For example, as we
mentioned in Section 2, wake locks provide a mechanism to indicate that an app needs
the device to stay awake for long-running operations (e.g., large file downloading).
Calling the acquire () API on an android.os.PowerManager.WakeLock
object will force the device to stay awake. While this interface is convenient, the
Android API Guides also warns developers to carefully use wake locks:

Call release() when you are done and don’t need the lock anymore. It is very
important to do this as soon as possible to avoid running down the device’s battery
excessively.

Nonetheless, developers still make mistakes and we found nine wake lock leaks in
DROIDLEAKS. Besides wake locks, DROIDLEAKS also contains resource leak bugs
related to Wi-Fi locks, which are used to keep the Wi-Fi radio on for network commu-
nications, and sensor listeners, which are registered to obtain continuous updates from
phone sensors. Such bugs can also lead to serious energy waste.

— The remaining four bugs (marked with “III” in Table 4) concern exclusive resources:
camera and semaphore (for restricting the number of concurrent threads). Forgetting
to release them can affect app functionalities. For example, Android API Guides asks
developers to release cameras when their apps finish using them to avoid affecting their
own or other apps:

If your application does not properly release the camera, all subsequent attempts
to access the camera, including those by your own application, will fail and may
cause your or other applications to be shut down.

Similarly, forgetting to release semaphores can block acquiring threads and the cor-
responding computational tasks, leading to unexpected app behavior or even crashes in
case apps stop responding to user interactions (Android ANR Errors 2018).

4.1.3 Typical Resource Leak Examples

In the following, we discuss recurring examples of resource leaks in Android apps to ease
understanding.

Complex App Component Lifecycle As we mentioned in Section 2, Android apps consist

of four types of app components. Each app component is required to follow a pre-
scribed lifecycle that defines how this component is created, used, and finally destroyed.

@ Springer

3450 Empirical Software Engineering (2019) 24:3435-3483

At runtime, the lifecycle event handlers (i.e., callback methods) defined in an app com-
ponent will be invoked by the Android OS when the component enters certain lifecycle
stages after user interactions. For instance, when a background service component is
started, its onCreate () handler will be invoked. When the service finishes its allo-
cated computational task, it will be destroyed and the onDestroy () handler will be
invoked. Typically, when starting a service component, certain system resources need to
be acquired for later computation. Listing 2 gives an example. The LibraryService
component of the E-book reading app FBReader opens a database connection when it is
launched (Line 4). The acquired resources should be released when the service is destroyed.
However, since the resources are acquired and released in different lifecycle stages (i.e.,
the acquiring and releasing operations are in different callback methods), developers can
easily forget to release the resources properly. In DROIDLEAKS, we observed 14 such
bugs and they are all leaks of Android-specific resources, including SQLiteDatabase,
WakeLock, MediaPlayer, LocationListener. To fix the bug in FBReader, devel-
opers added the database closing statement in the onDestroy () handler (Line 8) in
revision 7907a9a13b.”

Complex GUI Widget Lifecycle Besides the four types of top-level app components, the
complex lifecycles of interactive GUI widgets also make resource management difficult.
For example, the SurfaceView class is popularly used to create a window inside a
view hierarchy that can be rendered by a secondary thread (so as not to block the main
thread of an app). When using SurfacevView, developers need to carefully deal with
the lifecycle changes of a SurfaceView instance and that of its enclosing activity com-
ponent. Unfortunately, this is a non-trivial task and developers can easily make mistakes.
Listing 3 provides an example. The app IRCCloud, a group chatting app, contains an
activity ImageViewerActivity to view images and videos. The activity class uses
SurfaceView to implement a floating window for playing videos. When the floating
window pops up, the underlying media player is started (Lines 9-10) to play videos.
When users quit the activity (e.g., by clicking the return button), the media player is
released (Lines 22-24). However, if users switch to another app or screen and put the
ImageViewerActivity on pause at background, the video player would not be prop-
erly stopped and its associated resources cannot be released in a timely fashion (in such
cases, the onDestroy () callback will not be invoked because the activity is still alive).
To fix the resource leak, IRCCloud developers added the resource releasing code to the
surfaceDestroyed () callback (Lines 13-16), which will be invoked during app or
screen switching, in revision d7a441e3aé6.

Environment Interplay Besides handling user inputs, Android apps also need to frequently
react to environmental changes (e.g., changes of user location) to provide context-aware ser-
vices. Similar to user inputs, environmental conditions are hard to predict. Developers can
make resource management mistakes when handling environmental changes. Listing 4 gives
an example. The app CSipSimple, an Internet calling app, uses a reference-counted wake
lock to keep device awake for phone calls. The background service SipService moni-
tors the network status by registering the ServiceDeviceStateReceiver broadcast

"The code in all listings in this article has been simplified for readability. The readers can refer to the corre-
sponding code repositories, whose URLs are provided in Table 10 in the appendix, to check the original code
via the Git commit hash.

@ Springer

Empirical Software Engineering (2019) 24:3435-3483 3451

//CSipSimple revision da248d1132, in SipService class

1 protected void onChanged(String type, boolean connected) {
2 if (networkConnected()) {

3 if (mTask != null) {

4 mTask.cancel () ;

5. + sipWakelock.release () ;

6 }

7 mTask = new MyTimerTask (type, connected);
8. if (mTimer == null) mTimer = new Timer ();
9. mTimer.schedule (mTask, 2 * 1000L);

10. sipWakeLock.acquire () ;

11. }

12. 1}

Listing 4 A resource leak involving environment interplay

receiver, which actively listens to network state changes. Whenever the network connec-
tion is restored, the broadcast receiver will invoke the onChanged () callback defined in
the SipService class to acquire a wake lock for performing computational tasks (Lines
7-10) and cancel the existing task if any (Line 4). Under stable network conditions, there
is usually just one acquisition of the wake lock and everything will work smoothly (in such
cases, onChanged () will only be called once when the app connects to the network for
the first time). However, when the network condition is poor (i.e., frequent disconnections
and reconnections), onChanged () and its enclosing code for acquiring the wake lock will
be executed many times, leading to repetitive acquisitions of the held wake lock. The con-
sequence is that this reference-counted wake lock will not be properly closed and the device
will stay awake indefinitely, causing huge energy waste. This is because to properly release
a reference-counted wake lock, the number of calls to the releasing API should be equal to
the number of calls to the corresponding acquiring API. Later, developers fixed the resource
leak by releasing the held wake lock when canceling an existing timer task (Line 5) to bal-
ance the calls to the wake lock releasing and acquiring APIs in revision da248d1132 with
a commit log “release wakelock if already hold when network status changes”.

High Level of Concurrency Android apps adopt a single thread model. All app compo-
nents that run in the same process are instantiated in the app’s main thread (a.k.a. Ul
thread), which is created by the Android OS when the app is launched. System calls to each
component are dispatched from the main thread (Android Processes and Threads 2018).
Hence, Android apps usually leverage various concurrent programming constructs such as
android.os.AsyncTask and java.lang.Thread to perform intensive work like
network communications and database queries in worker threads in order not to block the
main thread (Lin et al. 2014), which would lead to poor runtime performance or even app
not responding (ANR) errors (Android ANR Errors 2018). Such a high level of concur-
rency can easily cause resource leaks, especially when the resource acquiring and releasing
operations are not in the same thread. Listing 5 gives an example. The app K-9 Mail, a
widely-used email client, acquires a wake lock for keeping its device awake to check emails
(Line 2). For synchronizing emails to the local folders, it creates a worker thread to com-
municate with the server (Lines 3—15). When the synchronization is finished, the worker
thread further creates another thread to notify listeners (Lines 6—13). The acquired wake
lock should be released after mail syncing. However, developers forgot this as there are
multiple threads involved and the wake lock acquiring operation, which runs in the app’s

@ Springer

3452 Empirical Software Engineering (2019) 24:3435-3483

//K-9 Mail revision f1232all%a

1 public void checkMail (..) {

2 wakelock.acquire();

3 put (“checkMail”, new Runnable () {

4 public void run () {

5. ...//check mail and sync to client
6 putBackground (“finalize sync”, new Runnable () {
7 public void run() {

8. + if (wakelock != null) {

9. + wakelock.release () ;
10. + }
11. ...//other listener update work
12. }
13. 1)
14. }
15. 1)
16. 1}

Listing 5 A resource leak involving multiple threads

main thread, is quite far away (in Listing 5, the wake lock operations are close to each other
because the code was simplified to ease understanding). They later figured out the mistake
and released the wake lock properly (Lines 8—10) in revision £1232a119a.

From the above examples, we can see that detecting resource leaks in Android apps is
a non-trivial task. For dynamic analyses, how to effectively generate user interactions and
simulate environment conditions to trigger resource leaking scenarios is a difficult task. For
static analyses, how to handle the implicit control flows among various callback methods for
inferring possible execution paths is a major challenge. Besides, static analyses also need
to precisely model concurrency and perform points-to analysis, since resources may not be
acquired and released in the same method or thread.

Answer to RQ1: DROIDLEAKS features a diverse set of resource leak bugs covering 33
different resource classes. Most bugs leak Android-specific system resources and can waste
memory and cause system slowdown. Other consequences include battery drain and app
crashes. Detecting resource leaks in Android apps can be difficult when the bugs involve
complex app lifecycle, environment interplay, or concurrency.

4.2 RQ2: Resource Leak Extent

RQ2 aims to study whether developers forgot to release the concerned system resources on
all program execution paths or only on certain execution paths. We also analyze whether
the concerned resource escapes local context or not. In this subsection, we first present our
analysis methodology and then discuss the main findings.

Resource leaks are essentially code omission faults, where developers forget to release
used system resources on certain or even all possible program execution paths. Depend-
ing on what execution paths the resources are leaked on, we categorize the bugs in
DROIDLEAKS into three categories:

— Complete leak: developers completely forget to release the system resources after use.
— Leak on exceptional paths: the system resources are properly released on normal
execution paths, but fail to be released when exceptions occur.

@ Springer

Empirical Software Engineering (2019) 24:3435-3483 3453

— Leak on certain normal paths: the system resources are released on some program
paths during normal executions (i.e., without the occurrence of exceptions), but fail to
be released on others. Note that this category includes resource leaks that occur under
app-specific erroneous conditions, where no exceptions are thrown or handled but the
concerned app enters a wrong internal state.’

Classification Methodology The classification was manually performed by studying each
bug and its patch, which contains the call to the API that releases the concerned resource.
If before adding the API call, the concerned resource is not released, we classify the bug
as a “complete leak”. If before adding the API call, the resource is released on some nor-
mal execution paths and the added call is to be invoked on the other normal execution
paths, we classify the bug as a “leak on certain normal paths”. If the added call is within a
catch or £inally block, we classify the bug as a “leak on exceptional path”. We also
analyzed whether a resource is local or escapes local context (used in other methods or
threads). We considered the following cases. If the concerned resource variable is declared
as a local variable and never used as a method call argument or by another thread, we con-
sider the resource local. If the resource variable is declared as a local variable and used
as an argument in a resource wrapping method call, we also consider the resource local
(e.g., the constructor of FilterInputStream can take a FileInputStream object
as an argument). If the resource variable is declared as an instance/class variable, we con-
sider that the resource may escape local context. If the resource variable is declared as a
local variable but used as a method call argument or by another thread, we consider that
the resource escapes local context. The process involved four people. Firstly, two authors of
this paper, who are experienced Java and Android developers, performed independent clas-
sifications for all bugs. Since the criteria are clear, there were disagreements only for five
bugs after the first round of checking. The two authors then made further discussions and
reached consensus. After that, the other two authors of the paper further checked the results
for consistency. Figure 2 presents the result. By analyzing the data, we made two major
observations.

First, it is surprising that the majority (63.7% = 186/292) of bugs in DROIDLEAKS
caused system resources to be leaked on all program execution paths. The remaining 36.3%
bugs caused system resources to be leaked on certain normal or exceptional paths. Accord-
ing to existing studies (Torlak and Chandra 2010), it is understandable that Java developers,
even experienced ones, can easily fail to release all system resources along all possible
exceptional paths. However, in DROIDLEAKS, we observed that resource leaks on excep-
tional paths only account for a minority (19.2% = 56/292). 44 resource leaks occurred
due to improper handling of checked exceptions (e.g., forgetting to put resource releasing
statements in a £inally block that handles a java.io.Exception). 12 resource leaks
occurred due to runtime exceptions such as java.lang.IllegalStateException.
In comparison, leaks during normal executions are the majority (80.8% = (1864 50)/292),
which is unexpected.

Second, for 188 (64.4%) of the 292 bugs, the resource variable does not escape the
local context. For example, as shown in Table 4, for the majority (116) of the 143 leaks of
Cursor, the resource variable does not escape the local context. For the remaining 104
(35.6%) of the 292 bugs, the resource variable escapes the local context. Example resource

8We observed only four such cases in DROIDLEAKS and therefore do not specifically discuss them in this
paper. Interested readers can refer to our project website for details.

@ Springer

3454 Empirical Software Engineering (2019) 24:3435-3483

140
125

120 Percentage of each category:

100 Complete leak: 186 /292 =63.7%

Leak on certain normal paths: 50/292=17.1%
80

61 * Leak on exceptional paths: 56 /292 = 19.2%

60

35
40

3 2 21

20

Complete leak Leak on certain normal paths Leak on exceptional paths

BResource escapes local context OResource does not escape local context

Fig.2 Resource leak extent

classes include WakeLock, MediaPlayer, WifiLock, LocationListener, and
Camera. For all bugs concerning these Android-specific resource classes, the resource
variables escape the local context. Such acquired resources are typically used by multiple
methods or threads. For instance, the MediaPlayer object in Listing 3 is used by multi-
ple methods and the WakeLock object in Listing 5 is used by multiple threads. For general
Java platform resources, a large percentage of InputStream (26/32), OutputStream
(5/6), and Semaphore (3/3) variables also escape the local context. I/O stream variables
are passed as arguments to various methods that perform tasks such as parsing, decoding,
and encryption, while Semaphore variables are shared and used by multiple threads. For
these resources that escape the local context, detecting their leaks via static analysis is
non-trivial, which requires inter-procedural analysis that handles concurrency.

Answer to RQ2: 63.7% bugs in DROIDLEAKS completely leak system resources on all
program execution paths. Only 19.2% resource leak bugs leak system resources on excep-
tional paths. For 64.4% of our studied resource leaks, the concerned resource variable
does not the escape local context. However, we found that for all bugs that are related
to several Android-specific resources including WakeLock, MediaPlayer, WifiLock,
LocationListener, Camera, the resource variables escape the local context and
could be used by multiple methods and threads. For general Java platform resources, a
large percentage (over 81.3%) of InputStream OutputStream, and Semaphore
variables also escape the local context.

4.3 RQ3: Common Fault Patterns

RQ3 studies the common resource management mistakes made by Android app developers.
To answer RQ3, we analyzed all bugs in DROIDLEAKS and tried to understand the mistakes
made by Android developers. From the discussions in Section 4.2, we can observe that in
most cases, developers simply forgot to release system resources after use (complete leaks
account for 63.7% cases). Nonetheless, we still observed three patterns of faults that recur
across our studied apps. We discuss them with examples in the following.

API Misuses The Android platform provides over ten thousand public APIs (Felt et

al. 2011) to developers to ease app development. In practice, it is generally impossible for
developers to get familiar with the specification of each Android API before developing

@ Springer

Empirical Software Engineering (2019) 24:3435-3483 3455

apps. Therefore, they can easily make mistakes when using unfamiliar APIs and resource
leaks can arise in such cases. In DROIDLEAKS, 35 resource leak bugs, which affect 12
different apps, occurred due to API misuses. In particular, we observed three widely-used
database APIs that Android developers often misuse.

The first one is the moveToFirst () API defined in the Cursor class. Calling it
will move the concerned database cursor to the first row if the cursor is not empty, or
return false otherwise. Developers may think that only non-empty database cursors
need to be closed (i.e., when this API returns true). Listing 6(a) gives an exam-
ple bug in IRCCloud. The app’s buggy version only closes the database cursor when
moveToFirst () returns true (Lines 2—4) and would not close the cursor when it is
empty. Later, developers realized this mistake and closed the database cursor properly
(Lines 6-8) in revision 827b5elb2b

The second API getCount () is also defined in the Cursor class and it returns
the number of rows in a cursor. Developers can use getCount () to check whether
a database query returns an empty cursor (i.e., when getCount () returns 0). Sim-
ilar to moveToFirst (), developers may think that only when there is at least one
row returned by the query, the cursor needs to be closed. Listing 6(b) gives an exam-
ple bug in CSipSimple. Originally, the buggy version only closes the database cursor
when getCount () returns a positive number (Line 2). This would cause the leak of

(a) IRCCloud revision 827b5¢1b2b

1. Cursor c¢ = activity.getContentResolver () .query(..);
2. if(c != null && c.moveToFirst()) {

3. RN

4., - c.close();

5. } else { ... }

6. + if(c !'= null) {

7. + c.close();

8. + }

(b) CSipSimple revision 920c6¢95d9

1. Cursor ¢ = getContentResolver () .query/(..);
2. if(c !'= null && c.getCount() > 0) {

3. .

4. c.close();

5. + } else if(c != null) {

6. + c.close();

7.

}

(c) WordPress revision 57c0808aa4
public class NotesAdapter extends CursorAdapter {

public void reloadNotes () {
- swapCursor (mQuery.execute());
changeCursor (mQuery.execute());

o U b W N
<+

}

Listing 6 Leaks of database cursors due to API misuses

@ Springer

3456

Empirical Software Engineering (2019) 24:3435-3483

the cursor when no result is returned after querying the database. The developers later
realized the problem and closed the database cursor correctly (Lines 5-6) in revision
920c6c95d9.

The third typical example is the swapCursor () API defined in the class
android.widget .CursorAdapter, which can be used to adapt cursor data to
a list view widget (a view that shows items in a vertically scrolling list). To replace
the underlying database cursor associated with a CursorAdapter with a new one
(e.g., after a new query), developers have two APIs to use: swapCursor (Cursor
newCursor) or changeCursor (Cursor newCursor). The only difference
between the two APIs is that the former does not close the old cursor, but returns it,
while the latter closes the old cursor. We found that developers may mistakenly thought
that swapCursor () would also close the old cursor. For example, the developers
of WordPress, a famous app for creating websites and blogs, made such a mistake.
Listing 6(c) gives the concerned code. They originally used the swapCursor () API
when reloading notes (Line 3). This would cause the leak of the old database cursor that
is replaced. Later, they found the mistake and revised their code (Line 4) in revision
57c0808aa4 and left this commit log: “Use changeCursor instead of swapCursor, so
the old cursor is closed”.

Lacking References to Resource Objects is the second common pattern of faults made
by developers. In Android apps, resource operations are performed by invoking certain
APIs on resource objects. However, in DROIDLEAKS, we observed that developers often
forget to create resource object reference variables and simply put resource operations in
nested method calls. Listing 7 gives an example in OwnCloud, a private file sync and share

app,
(Lin
obje
Lint
any

where the input stream opening API call is nested in the stream decoding API call
es 6-7), and there is no variable holding the reference to the underlying input stream
ct. In such cases, developers can easily forget to release the acquired resources and
(Android Lint 2018a), the built-in static analyzer in Android Studio, would not report
resource leaks to warn them (see Section 5.4 for more detailed discussions why Lint

//Owncloud revision dd35ee031b, in PreviewImageFragment class

O

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

@0 J oy Uk W N

Bitmap result = null;
+ InputStream is = null;

try {
File picture = new File(storagePath);
if (picture != null) {

- result = BitmapFactory.decodeStream (

- new BufferedInputStream(new FileInputStream(picture)));

is = new BufferedInputStream(new FileInputStream(picture)):;
result = BitmapFactory.decodeStream(is);

+ +

}
+ } finally {
+ if(is != null) {
+ try {
+ is.close();
+ } catch (IOException e) {
+ Log.e ("Unexpected exception...");
+
+
+

}

}

Listing 7 A resource leak due to the lack of resource object reference

@ Springer

Empirical Software Engineering (2019) 24:3435-3483 3457

//AnkiDroid revision d095337329

1. Cursor cur = null;
2. try{
3. cur = getDatabase () .rawQuery(..);
4. ...//some computation
5. + if(cur != null && !cur.isClosed()) {
6. + cur.close();
7. + }
8. //a new query
9. cur = getDatabase () .rawQuery(..);
10. ...//more computation
11. } finally {
12. if (cur '= null && !cur.isClosed()) {
13. cur.close();
14. }
15. }

Listing 8 A resource leak due to losing resource object reference

would miss such bugs). Such faults affected seven apps and caused 12 resource leak bugs
in DROIDLEAKS.

Losing References to Resource Objects is the third common pattern of faults, which
affected five apps and caused eight resource leak bugs. Listing 8 gives a typical example
in the app AnkiDroid, a popular flashcard app for education. As we can see from the code
snippet, the app performs two queries consecutively to retrieve data from its database (Lines
3 and 9). The developers were aware that database cursors need to be closed after use and
put the cursor closing code in a £inally block (Lines 11-15). However, since there are
two queries, two cursor objects are constructed, but the local variable cur only holds the
reference to the second cursor object. The reference to the first cursor object is lost after
requery (Line 9). The consequence is that the first database cursor is left unclosed, resulting
in the leak of its associated resources, which would not be automatically recycled by the
garbage collector (Torlak and Chandra 2010). Developers later fixed their mistake by releas-
ing the leaked cursor (Lines 5-7) in revision d095337329. Besides database cursors, we
also observed similar faults, where developers mistakenly override the variables that hold
references to I/O streams.

Answer to RQ3: We observed three common patterns of faults made by Android developers
in DROIDLEAKS: (1) API misuses, (2) lacking references to resource objects, and (3) losing
references to resource objects.

5 Performance of Existing Resource Leak Detectors

As we discussed earlier, DROIDLEAKS can provide a common and reliable basis for eval-
uating and comparing existing resource leak detectors for Android apps. To show such
usefulness, in this section, we perform large-scale experiments to evaluate and compare
the following eight static resource leak detectors, which are freely available to Android

@ Springer

3458 Empirical Software Engineering (2019) 24:3435-3483

developers. The first six are general-purpose detectors, while the last two are specifically
designed for finding the leaks of wake locks.

— Android Lint (Google 2018a) is a static code analysis tool for Android apps. It scans
the source files (e.g., Java code files, resource and configuration files) of an Android
app to identify micro-optimization opportunities (Linares-Véasquez et al. 2017) for
improving the app’s correctness, security, performance, usability, accessibility, and
internationalization.® It supports detecting various types of resource leaks as we will
show shortly. Lint is built-in in Android Studio, the official IDE for Android app
development.

— Code Inspection (JetBrains 2018) is a robust, fast, and flexible static source code anal-
ysis tool provided by the IntelliJ IDEA, a popular Java IDE with a large user base.
It supports detecting various kinds of compiler errors, runtime errors, and code inef-
ficiencies such as resource leaks. It also suggests corrections and improvements for
developers to enhance the quality of their Java and Android apps. Since Android Stu-
dio is built on IntelliJ] IDEA, Code Inspection is also freely accessible to Android
developers.

— FindBugs (Hovemeyer and Pugh 2004) is a popular open-source static analysis tool for
detecting bugs in Java programs. It operates on Java bytecode and performs efficient
analysis to look for potential problems by matching the bytecode against a list of bug
patterns,'? some of which are related to resource leaks. Since Android apps are typically
written in Java and first compiled to Java bytecode before being translated to the Dalvik
bytecode, FindBugs can also help detect quality threats in Android apps’ code.

— PMD (PMD 2018), similar to FindBugs, is another open-source and static analysis tool
for Java programs. It uses rule-sets to define when a piece of source code is erroneous.
PMD by default includes a set of built-in rules,!! some of which describe resouce leaks,
and analyzes Java source files to find common programming flaws. As Android apps
are mostly Java programs, PMD is also popularly used by Android developers for app
quality assurance.

— Relda2 (Wu et al. 2016) is a light-weight static analysis tool for detecting resource leaks
in Android apps. It directly analyzes the . apk file of an Android app for bug detection
and focuses on Android-specific resources such as camera, media player, and sensors.
It provides a general framework to support the analysis of various kinds of resources
in a conservative way that identifies the resource releasing points as suggested by the
Android API Guides. Relda2 can be configured to perform flow-sensitive or flow-
insensitive analyses to adapt to different analysis precision and efficiency requirements.

— Infer (Facebook 2018) is a popular open-source static analysis tool provided by
Facebook to detect potential bugs in Java and C/C++/Objective-C code. It can help
developers intercept critical bugs before they ship their products to users and help pre-
vent program crashes and poor performance. It takes information from the compilation
process of the programs under analysis and translates the source files to its own inter-
mediate language for detecting different patterns of bugs. Currently, for Android apps
and Java programs, Infer detects and reports resource leaks and null pointer exceptions.

— Elite (Liu et al. 2016b) is a static analysis technique designed by us to detect the misuses
of wake locks in Android apps. It takes an app’s . apk file as input and systematically

%http://tools.android.com/tips/lint-checks
10http://findbugs.sourceforge.net/bugDescriptions.htm]
Uhttps://pmd.sourceforge.io/pmd-4.3.0/rules/index.html

@ Springer

http://tools.android.com/tips/lint-checks
http://findbugs.sourceforge.net/bugDescriptions.html
https://pmd.sourceforge.io/pmd-4.3.0/rules/index.html

Empirical Software Engineering (2019) 24:3435-3483 3459

explores different executions of each Android app component that uses wake locks to
locate the problematic program points, where wake locks are not needed but acquired,
by performing an interprocedural data flow analysis. It also suggests the earliest pro-
gram points to release wake locks by analyzing whether the uses of wake locks at
different application states can bring users peceptible benefits.

— Verifier (Vekris et al. 2012) is a static verification technique proposed by Vekris et al.
It analyzes an Android app’s . apk file to verify the absence of the leaks of wake locks
with respect to a set of resource management policies derived by studying the lifecycle
of Android app components. The policies specify that at key program exit points, where
an app component has finished computation, the component must be in a low energy
state with all acquired wake locks released. Similar to Elite, Verifier also leverages data
flow analysis for the policy checking.

5.1 Research Questions

Our experiments aim to answer two research questions:

— RQ4 (Resource Class Coverage): What types of system resources (in terms of Java
classes) does each resource leak detector support?

— RQS5 (Bug Detection Effectiveness): How does each resource leak detector perform
in terms of bug detection rate and false alarm rate? Here, bug detection rate evaluates
to what extent each resource leak detector can successfully detect the bugs in DROI-
DLEAKS, whose resource classes are supported by it. False alarm rate, on the other
hand, evaluates to what extent each detector reports false warnings. We will define the
two evaluation metrics shortly in Section 5.2.

5.2 Experimental Setup

This subsection explains our experimental setup in detail. We first present our bug selection
process. We then explain how we compiled the app subjects and ran the existing tools to
evaluate their performance.

5.2.1 Bug Selection

DROIDLEAKS features a large set of resource leak bugs in Android apps. For our
experiments, we selected a subset of bugs in DROIDLEAKS. We did not evaluate the above-
mentioned eight detectors on all bugs due to two major reasons. First, as demonstrated by
our findings in Section 4.3, some bugs in DROIDLEAKS were caused by the same patterns
of faults, and hence there is no need to use all such bugs to evalute the eight detectors to
understand their strengths and limitations. Second, compiling open-source Android apps is
a labor-intensive process, especially for the versions that rely on specific libraries and do
not have well-prepared build scripts or instructions. To select a comprehensive subset of
bugs, we followed several criteria: (1) the subset should contain leaks of each type of sys-
tem resource (see Section 4.1), (2) the subset should contain bugs from each of the 32 app
subjects with resource leak bugs (see Table 1), (3) the subset should contain bugs with all
three different extents of resource leaks (see Section 4.2), and (4) the subset should contain
resource leak bugs of each fault pattern (see Section 4.3). With these criteria, we selected
116 resource leak bugs from the whole set of 292 bugs in DROIDLEAKS. Table 6 lists
the number of bugs selected for each type of system resource. These bugs will be used to
evaluate the eight detectors.

@ Springer

3460

Empirical Software Engineering (2019) 24:3435-3483

Table 6 Resource leak bugs selected for our experiments

ByteArrayOutputStream
OutputStreamWriter
Socket

Scanner
ObjectInputStream
ObjectOutputStream
PipedOutputStream
DataOutputStream
InputStreamReader

Formatter

SureSpot
VLC-Android
IRCCloud, K-9 Mail
c:geo

Hacker News Reader
Hacker News Reader
K-9 Mail

APG

FBReader

BitCoin Wallet

Resource class # Bugs Related Projects
Cursor 38 AnkiDroid, AnySoftKeyboard, APG, BankDroid,
ChatSecure, CSipSimple, Google Authenticator,
IRCCloud, Osmand, OSMTracker, Owncloud,
SMSDroid, TransDroid, WordPress
SQLiteDatabase 3 AnySoftKeyboard, ConnectBot, FBReader
WakeLock 8 CallMeter, ConnectBot, CSipSimple, K-9 Mail,
Open GPS Tracker, VLC-Android
MediaPlayer 3 IRCCloud, SureSpot
WifiLock 1 IRCCloud
LocationListener 2 OsmDroid, Ushahidi
AndroidHttpClient 2 Barcode Scanner
MotionEvent 1 Xabber
ParcelFileDescriptor 1 K-9 Mail
Parcel 1 c:geo
Camera 1 SipDroid
InputStream 9 K-9 Mail, SureSpot, Terminal Emulator
FileInputStream 1 CycleStreets
FileOutputStream 2 Quran for Android, Xabber
BufferedReader 1 SureSpot
FilterOutputStream 7 ChatSecure
OutputStream 4 K-9 Mail, SureSpot, Terminal Emulator
FilterInputStream 5 ChatSecure
DefaultHttpClient 4 BankDroid
BufferedOutputStream 1 Quran for Android
Semaphore 3 BitCoin Wallet, K-9 Mail, Ushahidi
BufferedWriter 1 VLC-Android
2
1
2
2
2
2
2
1
1
1
1

FileHandler

Total

116

Osmand

32

This table only provides the simple names of resource classes. Please refer to Table 4 for the fully qualified

names

@ Springer

Empirical Software Engineering (2019) 24:3435-3483 3461

5.2.2 App Compilation

For each of the 116 bugs, we compiled the corresponding buggy version and bug-fixing
version (i.e., patched version) of the concerned app into both Java bytecode and . apk files
(different tools take different types of inputs). The compilation was done in Android Studio.
If the source code of the apps contain Gradle build scripts, we simply used the scripts to
compile the apps. For the other cases, we prepared the Gradle build scripts by ourselves and
compiled the apps for the Android versions specified in the apps’ configuration file, i.e., the
AndroidManifest.xml file.

5.2.3 Tool Running & Result Analysis

Lint and Code Inspection are built-in in Android Studio. FindBugs and PMD provide
Android Studio plugins. So, in the experiments, we ran these four detectors, namely Lint
(built-in in Android Studio version 3.1.3),!2 Code Inspection (built-in in Android Studio
version 3.1.3), FindBugs (version 1.0.1),!3 PMD (version 6.0.1, integrated into Android
Studio Plugin QAPlug-PMD version 1.4.0),'# directly within Android Studio on a Mac-
book Pro with Intel Core i7 CPU @3.1 GHz and 16 GB RAM. The other four detectors are
stand-alone ones with only command-line interfaces. Infer (version 0.15.0)!5 was also run
on the Macbook Pro. Relda2, Elite and Verifier were run on a Linux server with 16 cores
of Intel Xeon CPU @2.10GHz and 192GB RAM, running CentOS 7.3. These three tools
are research prototypes without specific version numbers and we used their latest accessible
copies for the experiments.

To answer RQ4, we manually constructed a test app by simply requesting system
resources without releasing them. For example, in the code snippet in Listing 9, we make
the test app acquire a wake lock in its main activity’s onCreate () callback (Line 7),
which will be invoked when the app is launched, without releasing it. In our test app, the
main activity acquires all kinds of resources in Table 4 but does not release any of them. In
this way, we can test whether a tool supports detecting a certain type of resource leak or not.
We ran the above-mentioned tools except the three ones from academia, whose supported
resource classes are clearly reported in the corresponding research papers, to analyze this
test app. If the tool detects a certain type of resource leak in our simple test app, we will
further evaluate its bug detection effectiveness with real-world resource leaks of the type
indexed by DROIDLEAKS. Otherwise, we conclude that the tool does not support detecting
this type of resource leak. This is because if the tool cannot detect the simple case in our
test app, it is unlikely to be able to detect other complex cases. Our experimental results are
reported in Section 5.3.

After knowing the resource classes supported by each detector, we further selected the
applicable bugs from our earlier selected 116 bugs to evaluate them. As we mentioned ear-
lier, we aim to evaluate the bug detection rate and false alarm rate of the eight detectors.
We define the two metrics in Egs. 1 and 2, respectively. To evaluate the bug detection rate of
a detector ¢, denoted BDR(t), we leveraged the buggy app versions. Specifically, for each
selected bug that is applicable to evaluate ¢, we performed the following checking: when

Zhttps://developer.android.com/studio/releases/
Bhttps://plugins.jetbrains.com/plugin/3847-findbugs-idea/
4https://plugins.jetbrains.com/plugin/4596-qaplug--pmd/
https://github.com/facebook/infer/releases/tag/v0.15.0

@ Springer

https://developer.android.com/studio/releases/
https://plugins.jetbrains.com/plugin/3847-findbugs-idea/
https://plugins.jetbrains.com/plugin/4596-qaplug--pmd/
https://github.com/facebook/infer/releases/tag/v0.15.0

3462 Empirical Software Engineering (2019) 24:3435-3483

. public class MainActivity extends AppCompatActivity {
@Override
protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
PowerManager pm = (PowerManager) getSystemService (POWER SERVICE) ;
WakeLock wl = pm.newWakeLock (PARTIAL WAKE LOCK, “wakelock”);
wl.acquire () ;
}
}

O 00 J o U1 b W N

Listing9 Example code in the test app

analyzing the corresponding buggy app version, if the tool # reports a warning that describes
the leak of the concerned resource at the corresponding bug location, we consider this warn-
ing as a true one, i.e., the tool ¢ successfully detects the bug. Otherwise, we consider that the
tool misses the bug. After evaluating ¢ with all applicable bugs, ¢’s bug detection rate can
be calculated by Eq. 1. To evaluate the false alarm rate of each tool ¢, denoted FAR(t), we
leveraged the patched app versions. Specifically, for each selected bug that is applicable to
evaluate 7, we performed the following checking: when analyzing the corresponding patched
app version, if the tool 7 reports a warning that describes the concerned resource leak bug
(it should not since the bug is fixed), we consider this warning as a false alarm. Similar
to calculating bug detection rate, after evaluating ¢ with all applicable bugs, ¢’s false alarm
rate can be calculated by Eq. 2. One can observe that during the experiments, we would
ignore the warnings that are not related to the experimented bugs. This is due to the lack
of ground truth to judge whether the warnings are true ones. Preparing such ground truth
requires tremendous manual effort, which individual researchers like us cannot afford, as
each tool could report hundreds of warnings when analyzing each of our app subjects.

bugs detected by t on b 1
BDR(r) = ugs detected by 01.1 uggy app versions)
bugs experimented on t

FAR(H) = # false alarms reported by t on patched app versions @)
o #bugs experimented on t

5.3 RQ4: Resource Class Coverage

Table 7 reports the supported types of system resources for the eight evaluated resource leak
detectors. We mark a table cell with the “v"” symbol if the concerned resource leak detec-
tor supports the corresponding type of system resource. From the results, we can observe
several interesting findings.

Finding 1: None of the existing detectors supports all 33 types of systems resources
indexed by DROIDLEAKS. As we can see from Table 7, the six detectors have very dif-
ferent resource leak detection capabilities. Code Inspection supports the most (22 out of
33) types of system resources. FindBugs and Infer support 14 and 11 types, respectively. In
comparison, Relda2 and Android Lint only support a few types. Unexpectedly, PMD does
not support any type of system resource covered by DROIDLEAKS. We further checked the
rule set of PMD (see Footnote'!) and found out the reason. PMD indeed supports detecting
the leaks of system resources in Java programs, including the Connection, Statement,
and ResultSet classes in the java.sqgl package. However, since Android apps typi-
cally use the SQLite database APIs in the android.database.sqglite package, no

@ Springer

Empirical Software Engineering (2019) 24:3435-3483 3463

resource leak bugs indexed by DROIDLEAKS are related to the types of resources supported
by PMD. Therefore, we believe that PMD is less useful in detecting resource leaks for
Android apps comparing to the other detectors and we will not further evaluate it.

Finding 2: While we found that 29 of the 33 types of system resources are sup-
ported by at least one existing resource leak detector, the remaining four types, which
are highlighted in Table 7, are not supported by any existing detector. Although
there are only 10 (3.4% of 292) bugs related to the four types of system resources in
DROIDLEAKS, the leaks of such resources can cause serious consequences. For exam-
ple, as we discussed earlier in Section 4.1, the leak of the exclusive system resource
java.util.concurrent.Semaphore can affect app functionality and lead to thread
blocking, which could cause app crashes (Android ANR Errors 2018) and significantly
affect user experience. It would be helpful if the widely-used detectors can support detecting
such resource leaks.

Finding 3: While the majority (18 out of 22) of the general Java platform resources
are supported by multiple resource leak detectors, only two (out of 11) types of
Android platform resources are supported by multiple detectors. How to detect the
leak of general Java platform resources has long been studied by researchers (Weimer and
Necula 2004). This may explain that most general Java platform resources have multiple
detectors. In comparison, we observe that there is still the lack of research and tool support
for detecting Android-specific resource leaks. This is likely because Android, as a mobile
computing platform, has much shorter history than the traditional computing platforms and
the resources on the Android platform that are newly introduced have their special charac-
teristics (e.g., the SQLite database cursor object is not reference-counted, but the wake lock
object is reference-counted by default). We advocate that more efforts should be devoted
into designing and developing useful tools for detecting the leaks of Android platform
resources. We believe that the large number of real-world bugs in DROIDLEAKS can guide
the design of such tools and help reliably evaluate them in the future.

Answer to RQ4: Existing resource leak detectors, especially those designed for Android
apps, only support detecting the leaks of limited types of system resources. We advocate that
more efforts can be spent to make the existing detectors support detecting the leaks of more
types of system resources.

5.4 RQ5:Bug Detection Effectiveness

All our evaluated detectors finished analyzing each subject quickly. Android Lint, Code
Inspection, and FindBugs could finish analyzing an app in a couple of seconds, while Face-
book Infer, Relda2, Elite, and Verifier could finish in a few minutes. Table 8§ reports the bug
detection rate and false alarm rate of these detectors. As we can see from the results, the per-
formance of these detectors varies a lot and is generally not satisfactory. In the following,
we analyze the results of the detectors in details.

Finding 4: The static analysis of Lint, Code Inspection, and FindBugs is not inter-
procedural. Lint, Code Inspection, and FindBugs can analyze an Android app in a matter
of seconds and provide nearly real-time feedback to developers. However, despite such effi-
ciency, their analyses are not inter-procedural, meaning that the analyses do not take into
account the way that information flows among method calls. Due to this limitation, Lint,
Code Inspection, and FindBugs missed 13, 20, and 10 of the experimented resource leak
bugs, respectively. Take a resource leak bug in the Xabber app for example. Listing 10
gives the simplified code snippet with the patch that fixed the resource leak. As we can

@ Springer

Empirical Software Engineering (2019) 24:3435-3483

3464

>
>

weax3sindinopaiaiing ot eael

2 2 2 weax3sIndurIsl T oT “eael

2 2 2 weaxlsindano- ot eael

2 2 2 weax353INdanQas3TTd " OT "earl

VA Vs Iopeaypaiaijng ot eael

A VA 2 weax353IndIanEeSTTd " OT “earl

A A » weax3s53InduIs T OT “eael

2 M N wes1353ndul ‘oT “eael
soomosal wope|d eael [e1ouon

A eISWED " SIBMPIRY PTOIpUR

2 To901ed SO pIOIpUER

2 103dTI0S9QSTTATo0Ied SO pPTOIpUR

2 JUSAFUOTION " MOTA PTOIPUR

I9UL3STTUOTILeDOT " UOT3edOT "pPTOIPUR
DOTTITM IobRUBWTITM TITM 38U pTOIPUE

I0AeTdeTPoN BTIpaW pPTOIpPULR

SO S S

DOTaxeM - IShRUBNISMO * SO PTOIpUR
2 eseqe3eqe3TI0s 231 1bs @seqeiep proapue
s 2 s I0San) - eseqelep proipue

$001n0sa1 uLiojjeld proipuy

ag IeyuoA IJul gepled Nd - sSngpury uonoadsuropo) julf proipuy SSE[O BAR[POUIOOU0))

$10J09}9p YBA[92IN0SAI SUNSIX JO SA[qE) AIN0SAY / d|qel

pringer

NS

3465

Empirical Software Engineering (2019) 24:3435-3483

$[00} paIpmys no Jo Aue £q paproddns Jou S1e S[[90 PIPBYS UL SISSE[D AINOSIY |

I933ewrIod TIan eael

Iopesywearlsindul "oT " eael
wesx3zsandinoejeq ot “eael
wesx3sandinopadIdg ot eael
weax3sindianoioalqo ot -eael
weaxjsaindurinalgo ot eael
Iauueds - TIaIn eael
19300g 39U eael
I93TapMweaxlsaIndino ot "eael

wesax3sindinoAerayslAg- ot easel

>
A T N

N

I93TIMpaIaIIng oI eael

R IOIJLIDA 1Juf 7epIeY and s3ngpurq uonoadsur opo) jui] proipuy sse[o eAe[pouIoouo))

(ponunuod) £ ajqel

pringer

A

3466

Empirical Software Engineering (2019) 24:3435-3483

Table 8 Resource leak detector

performance Detector # experimented # detected bugs # false alarms
bugs (Bug detection (False alarm
rate) rate)
Code Inspection 89 61 (68.5%) 47 (52.8%)
Infer 72 40 (55.6%) 16 (22.2%)
Lint 40 12 (30.0%) 0 (0.0%)
FindBugs 38 6 (15.8%) 0 (0.0%)
"Relda2 supports two analysis Relda2-FS? 15 13 (86.7%) 10 (66.7%)
modes: flow-sensitive and Relda2-FI* 15 9 (60.0%) 4(26.7%)
flow-insensitive. Relda2-FS and Elite 8 7 (87.5%) 5(62.5%)
Relda2-FI represents the two Verifier 8 4 (50.0%) 3 (37.5%)

modes, respectively

see from the code, after the creation of the file and the output stream out, the method
rotateImageIfNeeded () further invokes the bitmap compressing APl compress ()
with out as an argument. Shortly after the API call returns, rotateImageIfNeeded ()
also returns without properly closing the output stream out. Such resource leak bugs
would not be detected by Lint, Code Inspection, or FindBugs because when analyz-
ing rotateImageIfNeeded (), the three detectors would not further analyze the
compress () method call, but conservatively assume that the output stream out would
be closed by the method call compress (). Unfortunately, the API call would not close
the stream and hence the leak occurs. In comparison, the other two general resource leak
detectors Infer and Relda2 do not have such a limitation. Their analyses are inter-procedural.

//Xabber revision 749fc810b6
public class AccountInfoEditorFragment ({

9.
10.
11.
12.
13.
14.
15.
le.
17.
18.
19.
20.
21.
22.

1
2
3
4.
5.
6
7
8

+ + + + + +

}

private Uri rotateImageIfNeeded (Uri srcUri) {
FileOutputStream out = null;
try {

Bitmap oriented = Bitmap.createBitmap(..);
final File rotateImageFile = createImageFile(..);
out = new FileOutputStream(rotateImageFile);
oriented.compress (.., out);
oriented.recycle();
return Uri.fromFile (rotateImageFile);
catch (Exception e) {
e.printStackTrace () ;
return srcUri;
finally {
try {
if (out != null) { out.flush(); out.close(); }
} catch (IOException e) {
e.printStackTrace() ;

Listing 10 A resource leak in Xabber. The resource variable escapes local context. The leak requires inter-
procedural analysis to detect

@ Springer

Empirical Software Engineering (2019) 24:3435-3483 3467

However, for practical concerns, there is still a length limit on the call chain in inter-
procedural analyses, meaning that such analyses cannot handle cases where the call chains
are exceptionally long. Although rare, we did observe one case, where Infer failed to detect
the leak of database cursors (see Owncloud revision 0c8dfb6e8d).

Finding 5: Lint, Code Inspection, FindBugs, and Infer are not lifecycle-aware and
cannot detect resource leak bugs where the resource variables are defined at class level.
In Java programs, there are three kinds of variables: local variables, instance variables, and
class/static variables. When evaluating the general resource leak detectors, we observed that
Lint, Code Inspection, FindBugs, and Infer can only detect resource leak bugs, where the
resource variables are local ones defined in a method under analysis. Take a bug in Connect-
Bot as an example. Listing 11 gives the simplified code snippet with the bug-fixing patch.
As we can see, the activity component PubkeyListActivity has an instance variable
pubkeydb of the type PubkeyDatabase, which is a subclass of SQLiteDatabase.
The database is connected when the activity starts (i.e., when onCreate () is invoked). It
would remain connected while the activity interacts with users. However, when the activ-
ity component is terminated, pubkeydb is forgotten to be closed, causing resource leaks.
Due to the event-driven computing paradigm, such component lifecycle related bugs are
common in Android apps (i.e., event handlers often need to share system resources). We
observed 14 such bugs in DROIDLEAKS. However, the four resource leak detectors could
not detect these bugs because they analyze methods one after another, but the scope of the
resource variables in such cases are beyond a single method (). In comparison, the other
general resource leak detector Relda2 does not have this limitation. By modeling the life-
cycle of Android app components, it is capable of performing analysis on a sequence of
method calls and recovering implicit inter-callback control flows, and thus would be able to
detect resource leaks, regardless of the resource variables’ scope.

Finding 6: Code Inspection, FindBugs, and Infer do not handle exceptional paths
properly in their analyses. As we reported earlier, 56 (19.2%) resource leak bugs in DROI-
DLEAKS occurred on exceptional paths. A resource leak detector therefore needs to pay
attention to such cases. However, properly handling exceptional paths is known to be a

//ConnectBot revision ef8ab06c34

1 public class PubkeyListActivity extends ListActivity {
2 protected PubkeyDatabase pubkeydb;
3 @Override
4. public void onCreate(..) {
5. //set up the SQLiteDatabase pubkeydb...
6 }
7 //other methods will query the database
8. protected void updateCursor () {
9.
10.
11. @Override
12. public void onStop () {
13. .
14. + if (this.pubkeydb != null) {
15. + this.pubkeydb.close();
l6. + }
17. }
18. }

Listing 11 A resource leak in ConnectBot. The resource variable is an instance variable

@ Springer

3468 Empirical Software Engineering (2019) 24:3435-3483

challenge for static analyses (Torlak and Chandra 2010). On one hand, not considering
exceptions would miss real resource leak bugs like the one in VLC-Android, whose relevant
code snippet and patch are given in Listing 12. In our experiments, we observed that Find-
Bugs missed nine such bugs and Infer missed five such bugs. On the other hand, considering
exceptional paths that would not be exercised in real executions would generate many false
alarms. For example, Code Inspection suggests developers to open I/O resources in a try
block and close them in the corresponding £inally block or use the try-with-resources
statement, which is introduced in Java 7, to ensure that the used resources are properly
closed. While such suggestions represent good practices, they are not the only way to guar-
antee correct resource management. In fact, we observed that real-world developers rarely
adopt these practices in our study. For instance, for majority (71.9% = 210/292) of the
cases in our data set, we found that developers do not enclose resource operations with the
try-catch-finally blocks, possibly because the Java exception handling mechanism, which
is arguably limited if not flawed, could seriously impair their productivity (Cabral and Mar-
ques 2007). Therefore, tools like Code Inspection and Infer generated many uninteresting
resource leak warnings when we applied them to analyze the patched versions of our app
subjects. The high false alarm rate (52.8%) of Code Inspection is due to this reason. 12 of
the 16 false alarms generated by Infer are also due to this reason.

Finding 7: Lack of full path sensitivity is a common limitation of all evaluated
detectors. Path-sensitive analyses treat different execution paths separately in order to yield
precise analysis results. However, the precision comes at the price of analysis overhead.
Path-sensitive analyses, even only performed intra-procedurally, are known to be expen-
sive for large code bases and therefore are not widely adopted. Besides, it is hard for static

//VLC-Android revision 8eb52cba7l

1 public class Logcat ({

2 public static void writelLogcat (String filename).. {
3 Ce.

4. InputStreamReader in = new InputStreamReader (..);
5. OutputStreamWriter out = new OutputStreamWriter (..);
6 BufferedReader br = new BufferedReader (input) ;

7 BufferedWriter bw = new BufferedWriter (output) ;
8. String line;

9. - while ((line = br.readLine()) != null) {

10. - bw.write(line); bw.newLine () ;

11. - }

12. + try {

13. + while ((line = br.readLine()) != null) {

14. + bw.write(line); bw.newLine();

15. + }

l16. + } catch (Exception e) {...

17. + } finally {

18. + bw.close(); out.close();

19. + br.close(); in.close();
20. + }
21. - bw.close(); out.close();
22. - br.close(); in.close();
23. }
24. 1}

Listing 12 A resource leak in VLC-Android due to I/O exceptions

@ Springer

Empirical Software Engineering (2019) 24:3435-3483 3469

analyses to achieve full path sensitivity due to the approximations they make when han-
dling complex constructs such as loops (static analyses usually unfold loops a finite number
of times). During our experiments, we observed that the analyses of Lint, Code Inspection,
FindBugs, and Relda2-FI (i.e., Relda2’s flow-insensitive mode) are path-insensitive and all
failed to detect those bugs that only leak system resources on certain program paths (see
Listing 6(a) for an example). These detectors simply conclude that there is no resource
leak as long as the concerned resource is released on any execution path. Elite, Verifier and
Relda2-FS (i.e., Relda2’s flow-sensitive mode) could detect resource leaks on certain pro-
gram paths, but their analyses are still path-insensitive. Relda2-FS performs model checking
on a program’s value flow graph, which is a concise program representation model that
preserves only resource-related information, and would report resource leaks unless the
concerned resources are released on all graph paths after use. Although this model check-
ing approach increased the bug detection rate of Relda2-FS, it also significantly increased
the tool’s false alarm rate as many paths on the statically constructed value flow graphs are
infeasible in reality. Unfortunately, Relda2-FS does not analyze path feasibility. Elite and
Verifier merge data flow facts at control flow confluence points and therefore lose the path
sensitivity. This is the main reason for them to miss bugs and report false alarms. Com-
paratively, Infer performs inter-procedurally path-sensitive analysis (on average, Infer takes
several minutes to analyze each of our app subjects) and checks path feasibility. However,
when the predicates of conditional branch instructions involve return values from library
API calls, Infer could still generate false alarms possibly because it does not analyze the
internals of library methods. Take the bug in Listing 8 for example. The resource leak
was fixed by adding the cursor closing statements (Lines 5-7), but Infer would still report
a resource leak warning when analyzing the patched version. This is because it cannot
properly analyze the library method isClosed (), especially when the methods involves
native calls, and hence does not know the logic relation between cur.isClosed ()
and cur.close () and assumes that cur also needs to be closed when both cur !=
null and cur.isClosed () evaluate to t rue. We reported this limitation of Infer to its
developers.'®

Besides the above common limitations, the evaluated detectors also have their unique
limitations as discussed below:

— Lint does not distinguish resource objects of the same type when analyzing each
method. It would not be able to detect resource leaks such as the one illustrated in List-
ing 8 since it does not know that the variable cur points to different objects at line 3
and line 9. Lint would also fail to detect resource leaks when the resource object ref-
erences are not assigned to local variables (see Listing 7 for an example, where the
anonymous resource objects are passed to other method calls as arguments).

— FindBugs does not analyze class hierarchy and would miss resource leak bugs when the
resource classes are self-defined and extend the standard resource classes. For exam-
ple, the class PubKeyDatabase in Listing 11 extends the SQLiteDatabase class
and is therefore also a resource class. However, FindBugs would not consider it as a
resource class and thus would not detect resource leaks like the one illustrated in the
figure.

— Relda2 cannot capture control flows among threads and therefore would miss bugs
or report false alarms when resource acquiring and releasing operations reside in two
different threads (see Listing 5 for an example).

16https://github.com/facebook/infer/issues/679

@ Springer

https://github.com/facebook/infer/issues/679

3470 Empirical Software Engineering (2019) 24:3435-3483

Verifier does not systematically locate program callbacks defined in each app com-
ponent and capture the implicit control flows among them. Instead, it only handles a
set of pre-defined callback methods. Due to this limitation, it missed several resource
leaks.

Answer to RQ5: The performance of existing resource leak detectors is generally unsatis-
factory. The detectors suffer from several common limitations, including improper handling
of exceptional paths, not performing inter-procedural analysis, the lack of path sensitivity
in code analysis, as well as their own unique limitations.

6 Discussions

6.1 Threats & Limitations

The validity of our study results may be subject to several threats. We discuss them in the
following.

The first threat is the representativeness of our selected Android app subjects. In our
work, we randomly selected 34 popular open-source Android apps from F-Droid. These
apps are diverse and cover 13 different app categories. We did not study more open-
source Android apps because the study requires careful manual validation of code
commits to decide whether they are fixing resource leaks or not. The process is labor-
intensive as it requires code comprehension. Manually checking the 1,811 code commit
candidates after keyword search took four co-authors several months to finish. After the
checking, we obtained a collection of 292 fixed resource leak bugs that cover a diverse
set of resource classes. This is already sufficient for carrying out our current study. In
the future, we plan to further investigate more open-source apps (e.g., smaller-scale
and less popular ones, whose resource management mistakes might be of interest to
novice Android developers) and commercial apps to include more resource leak bugs
into DROIDLEAKS.

The second threat is the potential misses of real resource leak bugs in our keyword
search process (i.e., false negatives in bug collection). To reduce the threat, we lever-
aged the resource operations identified by the state-of-the-art work (Wu et al. 2016)
to formulate keywords. We also used general keywords such as “leak”, “release”, and
“close”, aiming to maximally cover resource leak bugs that could affect our app sub-
jects. The strategy indeed helped us find a large number of fixed resource leak bugs
in 32 out of our 34 app subjects. To understand whether the bugs in DROIDLEAKS
are comprehensive and representative, we further performed two studies as follows.
First, we studied the bugs that were used to evaluate the existing resource leak detec-
tors for Android apps in the literature (Pathak et al. 2012, Vekris et al. 2012, Guo et al.
2013; Liu et al. 2014, 2016b; Wu et al. 2016, 2018). We found that the bug pat-
terns discussed in these studies are also included in DROIDLEAKS. For example, Wu
et al. (2016) discussed resource leaks due to complex app component lifecycles. Vekris
et al. (2012) pointed out that the high level of asynchronous computing in Android
apps (e.g., multi-threading) also often leads to resource leaks. As we can see from
Section 4.1, DROIDLEAKS provides similar instances of such bug patterns and include
many other types of bugs. Second, we searched the issue tracking systems of all our
studied 34 Android apps to locate documented resource leak bugs. Specifically, we

@ Springer

Empirical Software Engineering (2019) 24:3435-3483 3471

looked for closed issues whose reports and discussions contain the word “leak”.!” In
total, we found 162 candidate issue reports and 75 of them contain links to buggy code
or patches, which can help us validate whether a documented bug is indeed a resource
leak or not. We then studied these 75 issues and found 16 resource leak bugs (most
of the remaining issues are related to memory leaks). We examined the 16 bugs and
found that our approach missed two of them. We missed OsmDroid issue #832 because
it involves a custom resource class MapView, which wraps the standard Android and
Java resource classes. Since the resource acquiring and releasing operations are not
standard APIs and the developers did not mention the fixing of resource leaks in the
commit log, our approach would not be able to find it. We also missed K-9 Mail issue
#618 because its developers simply removed the code that does not close resources after
file writing. From these observations, we can see that although DROIDLEAKS does not
cover all resource leaks in the 34 projects, its currently indexed bugs are already quite
comprehensive. An alternative approach to compiling a comprehensive set of real-world
resource leak bugs is to analyze all classes in API specifications and extract all resource
acquiring and releasing APIs. One can then analyze the code repository of open-source
projects to find the call sites of these resource acquiring APIs and check whether there
are potential resource leaks. Future work with a similar goal of bug collection may also
follow this alternative approach.

— The third threat is that we assume the developers have fully fixed the bugs in our dataset.
Based on this assumption, if a tool reports a resource leak when analyzing a patched
version, we would classify the report as a false alarm. However, it is possible that devel-
opers may not have completely fixed the bugs in DROIDLEAKS (it is generally hard for
developers to guarantee program correctness). To reduce the threat, we randomly sam-
pled 60 of our 292 bugs and reviewed their patched versions. We observed that for all
sampled bugs, the relevant patching code are still in the latest commit in the code base.
This indicates that it is highly likely the patches indeed fixed the resource leaks.

— The last threat is the errors in our manual investigation of bugs and manual analyses
of experimental results. To minimize the threat, four authors carefully cross-validated
the results. We also release our bug dataset for public access (https://zenodo.org/record/
2589909).

One limitation of the current version of DROIDLEAKS is that it does not provide the
test cases that can trigger the resource leak bugs. This is mainly because the majority of
our studied open-source Android apps do not have associated test suites and manually con-
structing test cases is very expensive. We leave this as our future work. Another limitation
of our work is that we did not study the concrete impact of our identified resource leaks.
Resource leak is known to be a major type of defects in conventional software (Torlak and
Chandra 2010) as well as mobile software (Wu et al. 2016). As a type of performance bugs,
resource leaks may not have immediate fail-stop consequences such as app crashes, but they
may gradually slow down an app and waste limited computational resources, causing nega-
tive user experiences especially when the app runs on low-end mobile devices. We observed
that for 103 of the 292 resource leak bugs in DROIDLEAKS, there are associated bug reports
or pull requests, which were merged into the code bases, showing that the resource leaks are
of concern to developers. In the future, we plan to construct test cases to trigger different

17We cannot collect resource leak bug reports by checking issue report labels. None of the 34 projects have
labels for resource leak bugs in their issue tracking systems. In fact, the majority of the projects do not even
have a clear labeling of bug types and only five of them have labels for general performance bugs.

@ Springer

https://zenodo.org/record/2589909
https://zenodo.org/record/2589909

3472 Empirical Software Engineering (2019) 24:3435-3483

types of resource leak bugs in DROIDLEAKS and quatitatively study the impact of the bugs.
We will also study whether resource leak bugs are relevant to Android users via analyzing
app reviews and conducting large-scale user surveys.

6.2 Usefulness of DROIDLEAKS

DROIDLEAKS has many potential applications. We discuss several usage scenarios in the
following.

— Programming guidance. DROIDLEAKS contains a large number of real-world resource
leak bugs, covering diverse types of resources. Its various bugs and patch examples
can be used for training or educational purposes, providing programming guidance to
Android developers, especially novices.

— Evaluating bug detection and fixing techniques. The large number of diverse bugs in
DROIDLEAKS can also be used to evaluate existing resource leak detection and fixing
techniques for Android apps to understand their strengths and limitations and to guide
the future development of similar techniques. While we have leveraged DROIDLEAKS
to evaluate several existing static analysis based resource leak detection techniques,
other researchers can further leverage DROIDLEAKS to assess other techniques such
as resource leak testing (e.g., Yan et al. 2013, Wu et al. 2018) and fixing (e.g., Liu
et al. 2016a, Banerjee et al. 2018).

— Enabling resource leak patching research. Automatically patching program defects can
significantly improve the productivity of software developers. Since resource manage-
ment policies are well-defined, it is possible to automatically fix potential resource
leaks in programs to improve their performance and reliability. Towards this end, DROI-
DLEAKS provides diverse resource leak bugs and human-written patches to facilitate
the research in automated resource leak patching for Android apps.

— Supporting pattern-based bug detection. Our empirical study revealed common patterns
of faults made by Android developers. Such patterns can be leveraged to design static
checkers (e.g., plug-ins to Android Lint) for real time detection of resource leaks in
Android apps. For example, we implemented a static analyzer on the Soot program
analysis framework (Soot 2018) to detect the misuse of the moveToFirst () API(see
Listing 6(a) for an example). The analysis simply checks whether the database cursor
closing statement is control dependent on the if statements that check the return value
of the moveToFirst () API call. When we applied the analyzer to the latest version
of our 34 app subjects, it located 17 database cursor leaks in eight apps. Table 9 reports
the names of these apps and their versions, in which our checker detected bugs. We

Table 9 Detected leaks of

database cursors App name Version # found bugs Bug report ID
IRCCloud a96eda0860 2 147+
SureSpot 76b6£931b0 3 142*
OwnCloud b7577d8d86 1 1818*
SMSDroid 20e9fb149b 1 31*
Osmand 0970ad6496 1 3135*
OSMTracker d80deal6e4 2 74*
OlI File Manager 03aa8903e2 1 82+
WordPress 4a90526c41 6 4526, 4591*

@ Springer

Empirical Software Engineering (2019) 24:3435-3483 3473

reported our findings to the developers of these apps. The last column of Table 9 gives
the IDs of our bug reports. So far, all 17 bugs reported in eight bug reports have been
confirmed by developers. 16 bugs have been quickly fixed by developers themselves or
by merging our pull requests (the bug reports are marked with “*””). The only bug that
was not fixed by developers is the one in WordPress (see the last row in Table 9). The
reason is that the developers were going to abandon the concerned Java file completely
because it was too buggy and hence there was no need to fix our reported bug. This is
not our main contribution. We do not further discuss it here.

6.3 Implications on Future Resource Leak Detection Techniques

With our quantitative analysis of existing resource leak detectors, we summarize the char-
acteristics that a resource leak detection technique should have in order to achieve a high
precision and recall in practice.

First of all, its analysis should be inter-procedural. As we mentioned in Section 4.2, for
104 of the 292 bugs in DROIDLEAKS, the resource variables escape the local context,
many of which are passed as arguments to other method calls. We found that IDE tools
Android Lint, Code Inspection and FindBugs do not perform inter-procedural analysis
and this is a major reason of their false negatives in resource leak bug detection.
Second, it should handle exceptional paths selectively. While ignoring exceptional
paths would lead to false negatives in resource leak detection (e.g., FindBugs missed
nine out of 38 bugs due to this reason), reporting resource leaks due to all possible run-
time errors would overwhelm developers with a large number of spurious reports (e.g.,
all 47 false warnings generated by Code Inspection are due to this reason). An effec-
tive analysis should process exceptional paths that are likely to be exercised in practice.
Existing work (Torlak and Chandra 2010) proposed a belief-based heuristic to enable
selective exceptional path analysis.

Third, its analysis should be lifecycle-aware. Android apps are event-driven pro-
grams whose components follow prescribed lifecycles. In our empirical study, we
found that Android-specific resources, including SQLiteDatabase, WakeLock,
MediaPlayer, LocationListener, are often acquired and released in different
callback methods. Without considering implicit control flows among various callback
methods, a resource leak detector could miss many leaks of such resources. In our
experiments, we found that all tools from the research community (i.e., Relda2, Elite,
Verifier) are lifecycle-aware and consider control flows among callbacks. However, the
tools from industry, including Android Lint, Code Inspection, FindBugs, and Infer do
not handle such implicit control flows and missed many real resource leaks.

Fourth, its analysis should be able to recognize custom resources. It is often that devel-
opers of an app would extend a standard resource class to create a custom resource (see
the PubkeyDatabase example in Listing 11). An analysis tool that cannot recog-
nize such custom resources would not be able to detect their leaks. For example, in our
experiments, 11 of the 32 bugs FindBugs missed are due to this reason.

Lastly, its analysis should be path-sensitive. In our empirical study, we found that
50 out of the 292 resource leaks occur along certain normal paths (see Section 4.2).
A path-insensitive analysis would not be able to detect such leaks. For example, our
experiments revealed that the analyses of IDE tools Android Lint, Code Inspection and
FindBugs are path-insensitive and therefore missed quite a lot of real leaks, which is

@ Springer

3474 Empirical Software Engineering (2019) 24:3435-3483

understandable since these tools are light-weight and expected to provide instant feed-
back to developers. However, for tools that run off-line analyses, path-sensitivity should
be considered to avoid false negatives and false alarms.

7 Related Work
7.1 Resource Management

System resources are finite. Developers are required to release resources used by their apps
in a timely fashion when the resources are no longer needed. However, tasks for realizing
this requirement are often error-prone. Empirical evidence shows that resource leaks are
common in practice (Weimer and Necula 2004). To prevent resource leaks, researchers pro-
posed various language-level mechanisms and automated management techniques (Dillig
et al. 2008). Various tools were also developed to detect resource leaks (Arnold et al. 2011,
Liu et al. 2014, Torlak and Chandra 2010, Vekris et al. 2012, Wu et al. 2016). For example,
QVM (Arnold et al. 2011) is a specialized runtime that tracks the execution of Java programs
and checks for the violations of resource management policies. Tracker (Torlak and Chan-
dra 2010) is an industrial-strength tool for finding resource leaks in Java programs. These
techniques are applicable to Android apps, which are typically Java programs, but they do
not deal with the specialties in Android apps (e.g., implicit control flows). Therefore, in
recent years, researchers also tailored resource leak detection techniques for Android apps.
Examples are no-sleep energy bug detector (Pathak et al. 2012), Relda (Guo et al. 2013),
Relda2 (Wu et al. 2016), LeakDroid (Yan et al. 2013, Zhang et al. 2016), SENTINEL (Wu
et al. 2018) and our earlier work GreenDroid (Liu et al. 2014). Besides the efforts from
research communities, there are also industrial tools for resource leak detection for Android
apps, such as Facebook Infer, the built-in checker Lint in Android Studio. Despite the exis-
tence of so many techniques, there does not exist a common set of real-world resource leak
bugs in Android apps to facilitate the evaluation and comparison of these techniques. Our
work makes an initial attempt to fill the gap.

7.2 Memory Usage Analysis

Programs written in the Java programming language enjoy the benefits of garbage collec-
tion, which frees the developers from the responsibility of memory management. Although
developers do not need to care about explicitly recycling the created objects, memory leak
may still happen when the programs maintain references to objects that prevent garbage
collection or constantly create objects that have poor utility. To help diagnose such memory
usage problems, many techniques have been developed. For example, researchers proposed
to use object staleness (Bond and McKinley 2006, Hauswirth and Chilimbi 2004), growing
instances of types (Jump and McKinley 2007, Mitchell and Sevitsky 2003), and cost-benefit
analysis (Xu et al. 2010) to identify suspicious and low-utility data structures that may
cause memory leaks. Similar to resource leaks, besides tools originating from research com-
munities, there are also industrial tools for memory usage analysis. For example, Android
Profiler'® in Android Studio and MAT'? in Eclipse are both powerful and fast tools to help

18https://developer.android.com/studio/profile/android-profiler
http://www.eclipse.org/mat/

@ Springer

https://developer.android.com/studio/profile/android-profiler
http://www.eclipse.org/mat/

Empirical Software Engineering (2019) 24:3435-3483 3475

Android developers analyze heap usage for finding memory leaks and reducing memory
consumption. As we discussed earlier, many bugs in DROIDLEAKS cause memory wastes
and they can also be used to evaluate these techniques.

7.3 Bug Benchmarking

Bug databases/benchmarks enable controlled experimentation and reproducible research. In
early years, researchers constructed the widely-used benchmark Siemens (Hutchins et al.
1994), which provides a set of small to median sized C programs with manually seeded
faults to facilitate the evaluation of data flow and control flow based testing techniques.
Similarly, to facilitate the evaluation of tainting-based data flow analyses for Android,
researchers constructed DROIDBENCH (Arzt et al. 2014), whose latest version consists of
120 hand-crafted Android apps with malicious data flows (e.g., those leaking users’ pri-
vate data). SIR (Do et al. 2005) is the first benchmark that contains real bugs in Java, C,
C++, and C# programs, but still the majority of the bugs indexed by SIR were manually
seeded or obtained by mutation and the program sizes are small. In recent years, researchers
started to construct benchmarks of real bugs from large-scale software as many complex
systems have been open-sourced (Amann et al. 2016, Dallmeier and Zimmermann 2007,
Jalbert et al. 2011, Just et al. 2014, Lu et al. 2005). One typical example is the Defects4]
bug database (Just et al. 2014). It provides 357 bugs from five large Java programs with
exposing test cases. Compared to such bug benchmarks/databases, our DROIDLEAKS has
its unique features. First, to the best of our knowledge, it is the largest collection of real
bugs in open-source Android apps. Second, DROIDLEAKS focuses on resource leaks and
covers a wide range of different resource classes. Third, due to its focus, DROIDLEAKS fea-
tures resource leaks that occurred due to various root causes and common patterns of coding
mistakes, which can support Android programming education and future research.

8 Conclusion

This paper presented DROIDLEAKS, a database of 292 resource leak bugs in real-world
Android apps. We constructed DROIDLEAKS by analyzing 124,215 code revisions of 34
popular open-source app subjects. To understand the characteristics of these bugs, we con-
ducted an empirical study and discovered common resource management mistakes made by
developers. To show the usefulness of our study, we evaluated eight existing resource leak
detectors for Android apps using DROIDLEAKS. The evaluation led to a detailed analysis of
the limitations and strengths of the detectors.

In the future, we expect DROIDLEAKS to further grow and contain more diverse bug
instances. We plan to construct test cases to trigger the bugs indexed by DROIDLEAKS
and quantify their impacts. We also plan to evaluate the existing bug patching techniques,
especially those specifically designed for resource leaks (Liu et al. 2016a, Banerjee et al.
2018), using DROIDLEAKS and quantitatively compare their strengths and weaknesses to
see whether we can observe new challenges that need to be addressed for effective resource
leak repairing. With our efforts, we hope to shed light on future research and facilitate the
development of effective automated techniques to ensure correct resource management in
Android apps.

Acknowledgements We would like to thank the reviewers for their valuable comments and improve-
ment suggestions. This work is supported by the National Natural Science Foundation of China (Grant Nos.

@ Springer

3476

Empirical Software Engineering (2019) 24:3435-3483

61802164, 61690204, and 61672505), the Hong Kong RGC/GRF (Grant No. 16202917), the Science and
Technology Innovation Committee Foundation of Shenzhen (Grant No. ZDSYS201703031748284) and the
Program for University Key Laboratory of Guangdong Province (Grant No. 2017KSYS008). The authors
would also like to thank the support from the Collaborative Innovation Center of Novel Software Technology

and Industrialization, Jiangsu, China.

Appendix: Open-Source Projects Referenced in the Paper

Table 10 The URLs of the code repositories of the open-source projects

App name Code repository

AnkiDroid https://github.com/ankidroid/Anki- Android/
AnySoftKeyboard https://github.com/AnySoftKeyboard/AnySoftKeyboard
APG https://github.com/thialfihar/apg

BankDroid https://github.com/liato/android-bankdroid

Barcode Scanner https://github.com/zxing/zxing

BitCoin Wallet https://github.com/bitcoin- wallet/bitcoin- wallet
CallMeter https://github.com/felixb/callmeter

ChatSecure https://github.com/guardianproject/ChatSecure Android
ConnectBot https://github.com/connectbot/connectbot/

CSipSimple https://github.com/r3gis3r/CSipSimple

CycleStreets https://github.com/cyclestreets/android

c:geo https://github.com/cgeo/cgeo

FBReader https://github.com/geometer/FBReader]

Google Authenticator
Hacker News Reader

IRCCloud

K-9 Mail

OI File Manager
Open GPS Tracker
Osmand
OsmDroid
OSMTracker
ownCloud

Quran for Android
SipDroid
SMSDroid
SureSpot

Terminal Emulator
Transdroid
Ushahidi
VLC-Android
WebSMS
WordPress

Xabber

https://github.com/google/google-authenticator
https://github.com/manmal/hn-android
https://github.com/irccloud/android
https://github.com/k9mail/k-9
https://github.com/openintents/filemanager
https://github.com/rcgroot/open- gpstracker
https://github.com/osmandapp/Osmand
https://github.com/osmdroid/osmdroid
https://github.com/nguillaumin/osmtracker-android
https://github.com/owncloud/android
https://github.com/quran/quran_android
https://github.com/i-p-tel/sipdroid
https://github.com/felixb/smsdroid
https://github.com/surespot/android
https://github.com/jackpal/Android- Terminal- Emulator
https://github.com/erickok/transdroid
https://github.com/ushahidi/Ushahidi_Android
https://github.com/mstorsjo/vlc-android
https://github.com/felixb/websms/
https://github.com/wordpress-mobile/WordPress- Android
https://github.com/redsolution/xabber-android

@ Springer

https://github.com/ankidroid/Anki-Android/
https://github.com/AnySoftKeyboard/AnySoftKeyboard
https://github.com/thialfihar/apg
https://github.com/liato/android-bankdroid
https://github.com/zxing/zxing
https://github.com/bitcoin-wallet/bitcoin-wallet
https://github.com/felixb/callmeter
https://github.com/guardianproject/ChatSecureAndroid
https://github.com/connectbot/connectbot/
https://github.com/r3gis3r/CSipSimple
https://github.com/cyclestreets/android
https://github.com/cgeo/cgeo
https://github.com/geometer/FBReaderJ
https://github.com/google/google-authenticator
https://github.com/manmal/hn-android
https://github.com/irccloud/android
https://github.com/k9mail/k-9
https://github.com/openintents/filemanager
https://github.com/rcgroot/open-gpstracker
https://github.com/osmandapp/Osmand
https://github.com/osmdroid/osmdroid
https://github.com/nguillaumin/osmtracker-android
https://github.com/owncloud/android
https://github.com/quran/quran_android
https://github.com/i-p-tel/sipdroid
https://github.com/felixb/smsdroid
https://github.com/surespot/android
https://github.com/jackpal/Android-Terminal-Emulator
https://github.com/erickok/transdroid
https://github.com/ushahidi/Ushahidi_Android
https://github.com/mstorsjo/vlc-android
https://github.com/felixb/websms/
https://github.com/wordpress-mobile/WordPress-Android
https://github.com/redsolution/xabber-android

Empirical Software Engineering (2019) 24:3435-3483 3477

References

Amann S, Nadi S, Nguyen HA, Nguyen TN, Mezini M (2016) Mubench: a benchmark for api-misuse detec-
tors. In: Proceedings of the 2016 IEEE/ACM 13th working conference on mining software repositories
(MSR), pp 464467

Android ANR Errors (2018) https://developer.android.com/training/articles/perf-anr.html

Android API Guides (2018) https://developer.android.com/guide/

Android Processes and Threads (2018) https://developer.android.com/guide/components/processes-and-
threads.html

Arnold M, Vechev M, Yahav E (2011) Qvm: an efficient runtime for detecting defects in deployed systems.
ACM Trans Softw Eng Methodol 21(1):2:1-2:35

Arzt S, Rasthofer S, Fritz C, Bodden E, Bartel A, Klein J, Le Traon Y, Octeau D, McDaniel P (2014)
Flowdroid: precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for android
apps. In: Proceedings of the 35th ACM SIGPLAN conference on programming language design and
implementation, PLDI * 14, pp 259-269

Banerjee A, Chong LK, Ballabriga C, Roychoudhury A (2018) Energypatch: repairing resource leaks to
improve energy-efficiency of android apps. IEEE Trans Softw Eng 44(5):470-490

Bond MD, McKinley KS (2006) Bell: bit-encoding online memory leak detection. In: Proceedings of the 12th
international conference on architectural support for programming languages and operating systems,
ASPLOS XII, pp 61-72

Cabral B, Marques P (2007) Exception handling: a field study in java and .net. In: Proceedings of the 21st
European conference on object-oriented programming, pp 151-175

Dallmeier V, Zimmermann T (2007) Extraction of bug localization benchmarks from history. In: Proceedings
of the twenty-second IEEE/ACM international conference on automated software engineering, ASE *07,
pp 433-436

Dillig I, Dillig T, Yahav E, Chandra S (2008) The closer: automating resource management in java. In:
Proceedings of the 7th international symposium on memory management, ISMM *08, pp 1-10

Do H, Elbaum S, Rothermel G (2005) Supporting controlled experimentation with testing techniques: an
infrastructure and its potential impact. Empirical Softw Engg 10(4):405-435

F-Droid (2018) A catalogue of open-source android apps. https://f-droid.org/

Facebook (2018) Infer: a tool to detect bugs in java and C/C++/Objective-C code. http://fbinfer.com/

Felt AP, Chin E, Hanna S, Song D, Wagner D (2011) Android permissions demystified. In: Proceedings of
the 18th ACM conference on computer and communications security, CCS *11, pp 627-638

Google (2018a) Android lint: a code scanning tool for android apps. https://developer.android.com/studio/
write/lint.html

Google (2018b) Android studio. https://developer.android.com/studio/index.html

Guo C, Zhang J, Yan J, Zhang Z, Zhang Y (2013) Characterizing and detecting resource leaks in android
applications. In: Proceedings of the 28th IEEE/ACM international conference on automated software
engineering (ASE), pp 389-398

Hauswirth M, Chilimbi TM (2004) Low-overhead memory leak detection using adaptive statistical profiling.
In: Proceedings of the 11th international conference on architectural support for programming languages
and operating systems, ASPLOS XI, pp 156-164

Hovemeyer D, Pugh W (2004) Finding bugs is easy. SIGPLAN Not 39(12):92-106. ISSN 0362-1340

Hutchins M, Foster H, Goradia T, Ostrand T (1994) Experiments on the effectiveness of dataflow- and
control-flow-based test adequacy criteria. In: Proceedings of 16th international conference on software
engineering, pp 191-200

Jalbert N, Pereira C, Pokam G, Sen K (2011) Radbench: a concurrency bug benchmark suite. In: Proceedings
of the 3rd USENIX conference on hot topic in parallelism, HotPar’11, pp 2-2

Java API Specifications (2018) https://docs.oracle.com/javase/7/docs/api/

JetBrains (2018) Code inspection in IntelliJ] IDEA. https://www.jetbrains.com/help/idea/2016.3/code-
inspection.html

Jump M, McKinley KS (2007) Cork: dynamic memory leak detection for garbage-collected languages. In:
Proceedings of the 34th annual ACM SIGPLAN-SIGACT symposium on principles of programming
languages, POPL *07, pp 31-38

Just R, Jalali D, Ernst MD (2014) Defects4j: a database of existing faults to enable controlled testing studies
for java programs. In: Proceedings of the 2014 international symposium on software testing and analysis,
ISSTA 2014, pp 437-440

Lin Y, Radoi C, Dig D (2014) Retrofitting concurrency for android applications through refactoring. In: Pro-
ceedings of the 22nd ACM SIGSOFT international symposium on foundations of software engineering,
FSE 2014, pp 341-352

@ Springer

https://developer.android.com/training/articles/perf-anr.html
https://developer.android.com/guide/
https://developer.android.com/guide/components/processes-and-threads.html
https://developer.android.com/guide/components/processes-and-threads.html
https://f-droid.org/
http://fbinfer.com/
https://developer.android.com/studio/write/lint.html
https://developer.android.com/studio/write/lint.html
https://developer.android.com/studio/index.html
https://docs.oracle.com/javase/7/docs/api/
https://www.jetbrains.com/help/idea/2016.3/code-inspection.html
https://www.jetbrains.com/help/idea/2016.3/code-inspection.html

3478 Empirical Software Engineering (2019) 24:3435-3483

Linares-Vasquez M, Vendome C, Tufano M, Poshyvanyk D (2017) How developers micro-optimize android
apps. J Syst Softw 130(C):1-23

Liu Y, Xu C, Cheung SC, Lii J (2014) Greendroid : automated diagnosis of energy inefficiency for
smartphone applications. IEEE Trans Softw Eng 40(9):911-940

LiuJ, Wu T, Yan J, Zhang J (2016a) Fixing resource leaks in android apps with light-weight static analysis
and low-overhead instrumentation. In: 2016 IEEE 27th international symposium on software reliability
engineering (ISSRE), pp 342-352

Liu Y, Xu C, Cheung S-C, Terragni V (2016b) Understanding and detecting wake lock misuses for android
applications. In: Proceedings of the 2016 24th ACM SIGSOFT international symposium on foundations
of software engineering, FSE 2016, pp 396-409

Lovins J (1968) Development of a stemming algorithm. Mechanical Translation and Computational
Linguistics 11(1 and 2):22-31

Lu S, LiZ, Qin F, Tan L, Zhou P, Zhou Y (2005) Bugbench: benchmarks for evaluating bug detection tools.
In: Proceedings of the workshop on the evaluation of software defect detection tools

Mitchell N, Sevitsky G (2003) Leakbot: an automated and lightweight tool for diagnosing memory
leaks in large java applications. In: Proceedings of the 17th European conference on object-oriented
programming, pp 351-377

Pathak A, Jindal A, Hu YC, Midkiff SP (2012) What is keeping my phone awake?: characterizing and
detecting no-sleep energy bugs in smartphone apps. In: Proceedings of the 10th international conference
on mobile systems, applications, and services, MobiSys *12, pp 267-280

PMD (2018) A java source code analyzer. http://pmd.sourceforge.net/

Soot (2018) A framework for analyzing and transforming java and android apps. http://sable.github.io/soot/

Torlak E, Chandra S (2010) Effective interprocedural resource leak detection. In: Proceedings of the 32nd
ACMV/IEEE international conference on software engineering - volume 1, ICSE *10, pp 535-544. ISBN
978-1-60558-719-6

Vekris P, Jhala R, Lerner S, Agarwal Y (2012) Towards verifying android apps for the absence of no-sleep
energy bugs. In: Proceedings of the 2012 USENIX conference on power-aware computing and systems,
HotPower’12, pp 3-3

Weimer W, Necula GC (2004) Finding and preventing run-time error handling mistakes. In: Proceedings of
the 19th annual ACM SIGPLAN conference on object-oriented programming, systems languages, and
applications, OOPSLA °04, pp 419-431

Wu H, Wang Yan, Rountev A (2018) Sentinel: generating gui tests for android sensor leaks. In: Proceedings
of the 13th international workshop on automation of software test, AST *18, pp 27-33

WuT, LiuJ, XuZ, Guo C, Zhang Y, Yan J, Zhang J (2016) Light-weight, inter-procedural and callback-aware
resource leak detection for android apps. IEEE Trans Soft Eng 42(11):1054-1076

Xu G, Mitchell N, Arnold M, Rountev A, Schonberg E, Sevitsky G (2010) Finding low-utility data struc-
tures. In: Proceedings of the 31st ACM SIGPLAN conference on programming language design and
implementation, PLDI *10, pp 174-186

Yan D, Yang S, Rountev A (2013) Systematic testing for resource leaks in android applications. In: Pro-
ceedings of the 2013 IEEE 24th international symposium on software reliability engineering (ISSRE),
pp 411-420

Zhang H, Wu H, Rountev A (2016) Automated test generation for detection of leaks in android applications.
In: Proceedings of the 11th international workshop on automation of software test, AST *16, pp 64-70

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

http://pmd.sourceforge.net/
http://sable.github.io/soot/

Empirical Software Engineering (2019) 24:3435-3483 3479

Yepang Liu received the doctoral degree in computer science and engineering from The Hong Kong Uni-
versity of Science and Technology (HKUST). In 2018, he joined the Department of Computer Science and
Engineering of the Southern University of Science and Technology (SUSTech) as a tenure-track assistant
professor. His research interests include software engineering, software testing and analysis, cyber-physical
systems, mobile computing and cybersecurity. He published widely in top software engineering venues and
has received two ACM SIGSOFT Distinguished Paper Awards. He also participates actively in program and
organizing committees of major international conferences and received ACM SIGSOFT Service Award for
his contribution to the successful organization of the 22nd ACM SIGSOFT International Symposium on the
Foundations of Software Engineering (FSE 2014).

Jue Wang received his B.Sc. degree in the Department of Computer Science and Technology at Nanjing
University. He is now a research postgraduate student in the State Key Laboratory for Novel Software Tech-
nology, pursuing his Ph.D. degree in computer science and technology at Nanjing university. His research
interests include but are not limited to Android app testing and analysis. His current work focuses on
automatically generating high-quality test inputs for Android apps.

@ Springer

3480 Empirical Software Engineering (2019) 24:3435-3483

Lili Wei is a Ph.D. candidate under the supervision of Professor Shing-Chi Cheung at the Department of
Computer Science and Engineering of the Hong Kong University of Science and Technology (HKUST). She
received her B.Sc. degree from Nanjing University in 2015. Her research interests include software analytics,
testing, and mining code repositories. Her recent studies focus on testing and analyzing Android apps. Her
research on Android fragmentation-induced compatibility issues received an ACM SIGSOFT Distinguished
Paper Award in ASE 2016. She also received a Google PhD Fellowship Award and an MSRA PhD Fellowship
Award in 2018.

Chang Xu received the doctoral degree in computer science and engineering from The Hong Kong University
of Science and Technology. He is now a full professor with the State Key Laboratory for Novel Software
Technology and Department of Computer Science and Technology, Nanjing University. His research interests
include big data software engineering, intelligent software testing and analysis, and adaptive and autonomous
software systems. He participates actively in program and organizing committees of major international
software engineering conferences, and received two ACM SIGSOFT Distinguished Paper Awards from ICSE
2014 and ASE 2018.

@ Springer

Empirical Software Engineering (2019) 24:3435-3483 3481

Shing-Chi Cheung received his doctoral degree in Computing from the Imperial College London. He joined
the Hong Kong University of Science and Technology (HKUST) where he is a professor of Computer Science
and Engineering in 1994. He founded the CASTLE research group at HKUST and co-founded in 2006 the
International Workshop on Automation of Software Testing (AST). He was the General Chair of the 22nd
ACM SIGSOFT International Symposium on the Foundations of Software Engineering (FSE 2014). He was
an editorial board member of the IEEE Transactions on Software Engineering (TSE, 2006-9). His research
interests focus on the quality enhancement of software for mobile, web, deep learning, open-source and end-
user applications. He is an ACM Distinguished Scientist. More information about his CASTLE research
group can be found at http://sccpu2.cse.ust.hk/castle/people.html.

Tianyong Wu received the doctoral degree in Software Engineering from the University of Chinese Academy
of Sciences (UCAS). He is now a senior engineer in Huawei Technologies Co. Ltd. His research interests
include static bug detection, automatic bug fixing, and intelligent software engineering.

@ Springer

http://sccpu2.cse.ust.hk/castle/people.html

3482 Empirical Software Engineering (2019) 24:3435-3483

Jun Yan received his BS degree in E.E. from University of Science and Technology of China (USTC) in 2001
and his Ph.D. degree from Graduate University, Chinese Academy of Science (GUCAS) in 2007, respec-
tively. He is now a research professor at Institute of Software, Chinese Academy of Sciences (ISCAS). His
research interests include program analysis and software testing.

| M.

Jian Zhang is a Research Professor with the Institute of Software, Chinese Academy of Sciences, Bei-
jing, China, and a Professor with the University of Chinese Academy of Sciences, Beijing, China. His main
research interests include automated reasoning, constraint satisfaction, program analysis, and software test-
ing. He has served on the program committees of about 70 international conferences. He also serves on the
editorial boards of several journals, including the IEEE Transactions on Reliability, Frontiers of Computer
Science, and the Journal of Computer Science and Technology. He is a senior member of ACM, a senior
member of IEEE, and a fellow of the China Computer Federation (CCF).

@ Springer

Empirical Software Engineering (2019) 24:3435-3483 3483

Affiliations

Yepang Liu' © . Jue Wang? - Lili Wei? - Chang Xu? - Shing-Chi Cheung3 -
Tianyong Wu#? . Jun Yan*” . Jian Zhang*”

Jue Wang

juewang591 @ gmail.com
Lili Wei
Iweiae@cse.ust.hk

Chang Xu
changxu@nju.edu.cn

Shing-Chi Cheung
scc@cse.ust.hk
Tianyong Wu
wuty @ios.ac.cn

Jun Yan
yanjun@ios.ac.cn

Jian Zhang
zj@jos.ac.cn

Shenzhen Key Laboratory of Computational Intelligence, Department of Computer Science
and Engineering, Southern University of Science and Technology, Shenzhen, China

2 State Key Laboratory for Novel Software Technology and Department of Computer Science
and Technology, Nanjing University, Nanjing, China

Department of Computer Science and Engineering, Hong Kong University of Science and Technology,
Hong Kong, China

State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences, Beijing, China

3 University of Chinese Academy of Sciences, Beijing, China

@ Springer

http://orcid.org/0000-0001-8147-8126
mailto: juewang591@gmail.com
mailto: lweiae@cse.ust.hk
mailto: changxu@nju.edu.cn
mailto: scc@cse.ust.hk
mailto: wuty@ios.ac.cn
mailto: yanjun@ios.ac.cn
mailto: zj@ios.ac.cn

	DroidLeaks: a comprehensive database of resource leaks in Android apps
	Abstract
	Introduction
	Paper Organization

	Background
	App Components and Event Handlers
	System Resource Management
	Resource Leak

	Collecting Resource Leak Bugs
	Selecting Open-Source App Subjects
	Keyword Search
	Manual Validation of the Collected Bugs

	Characteristics of Collected Resource Leak Bugs
	RQ1: Resource Types and Consequence of Leaks
	Resource Types
	Consequence of Resource Leaks
	Typical Resource Leak Examples
	Complex App Component Lifecycle
	Complex GUI Widget Lifecycle
	Environment Interplay
	High Level of Concurrency

	RQ2: Resource Leak Extent
	Classification Methodology

	RQ3: Common Fault Patterns
	API Misuses
	Lacking References to Resource Objects
	Losing References to Resource Objects

	Performance of Existing Resource Leak Detectors
	Research Questions
	Experimental Setup
	Bug Selection
	App Compilation
	Tool Running & Result Analysis

	RQ4: Resource Class Coverage
	RQ5: Bug Detection Effectiveness

	Discussions
	Threats & Limitations
	Usefulness of DroidLeaks
	Implications on Future Resource Leak Detection Techniques

	Related Work
	Resource Management
	Memory Usage Analysis
	Bug Benchmarking

	Conclusion
	Appendix A Open-Source Projects Referenced in the Paper
	References
	Affiliations

