
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/307597762

E-GreenDroid: Effective Energy Inefficiency Analysis for Android Applications

Conference Paper · September 2016

DOI: 10.1145/2993717.2993720

CITATIONS

8
READS

118

5 authors, including:

Some of the authors of this publication are also working on these related projects:

Sensor-based Motion Recognition View project

Jue Wang

Nanjing University

7 PUBLICATIONS 41 CITATIONS

SEE PROFILE

Yepang Liu

The Hong Kong University of Science and Technology

51 PUBLICATIONS 841 CITATIONS

SEE PROFILE

Chang Xu

Nanjing University

127 PUBLICATIONS 1,659 CITATIONS

SEE PROFILE

Xiaoxing Ma

Nanjing University

118 PUBLICATIONS 1,076 CITATIONS

SEE PROFILE

All content following this page was uploaded by Chang Xu on 14 January 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/307597762_E-GreenDroid_Effective_Energy_Inefficiency_Analysis_for_Android_Applications?enrichId=rgreq-05884b9a1b763a1d3ba3a3bba8dcebff-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU5Nzc2MjtBUzo1ODI2NTQ4NDA4NTI0ODFAMTUxNTkyNzE0NzkxNQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/307597762_E-GreenDroid_Effective_Energy_Inefficiency_Analysis_for_Android_Applications?enrichId=rgreq-05884b9a1b763a1d3ba3a3bba8dcebff-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU5Nzc2MjtBUzo1ODI2NTQ4NDA4NTI0ODFAMTUxNTkyNzE0NzkxNQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Sensor-based-Motion-Recognition?enrichId=rgreq-05884b9a1b763a1d3ba3a3bba8dcebff-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU5Nzc2MjtBUzo1ODI2NTQ4NDA4NTI0ODFAMTUxNTkyNzE0NzkxNQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-05884b9a1b763a1d3ba3a3bba8dcebff-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU5Nzc2MjtBUzo1ODI2NTQ4NDA4NTI0ODFAMTUxNTkyNzE0NzkxNQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jue-Wang-72?enrichId=rgreq-05884b9a1b763a1d3ba3a3bba8dcebff-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU5Nzc2MjtBUzo1ODI2NTQ4NDA4NTI0ODFAMTUxNTkyNzE0NzkxNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jue-Wang-72?enrichId=rgreq-05884b9a1b763a1d3ba3a3bba8dcebff-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU5Nzc2MjtBUzo1ODI2NTQ4NDA4NTI0ODFAMTUxNTkyNzE0NzkxNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Nanjing_University?enrichId=rgreq-05884b9a1b763a1d3ba3a3bba8dcebff-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU5Nzc2MjtBUzo1ODI2NTQ4NDA4NTI0ODFAMTUxNTkyNzE0NzkxNQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jue-Wang-72?enrichId=rgreq-05884b9a1b763a1d3ba3a3bba8dcebff-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU5Nzc2MjtBUzo1ODI2NTQ4NDA4NTI0ODFAMTUxNTkyNzE0NzkxNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yepang-Liu?enrichId=rgreq-05884b9a1b763a1d3ba3a3bba8dcebff-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU5Nzc2MjtBUzo1ODI2NTQ4NDA4NTI0ODFAMTUxNTkyNzE0NzkxNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yepang-Liu?enrichId=rgreq-05884b9a1b763a1d3ba3a3bba8dcebff-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU5Nzc2MjtBUzo1ODI2NTQ4NDA4NTI0ODFAMTUxNTkyNzE0NzkxNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/The-Hong-Kong-University-of-Science-and-Technology?enrichId=rgreq-05884b9a1b763a1d3ba3a3bba8dcebff-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU5Nzc2MjtBUzo1ODI2NTQ4NDA4NTI0ODFAMTUxNTkyNzE0NzkxNQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Yepang-Liu?enrichId=rgreq-05884b9a1b763a1d3ba3a3bba8dcebff-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU5Nzc2MjtBUzo1ODI2NTQ4NDA4NTI0ODFAMTUxNTkyNzE0NzkxNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chang-Xu-26?enrichId=rgreq-05884b9a1b763a1d3ba3a3bba8dcebff-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU5Nzc2MjtBUzo1ODI2NTQ4NDA4NTI0ODFAMTUxNTkyNzE0NzkxNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chang-Xu-26?enrichId=rgreq-05884b9a1b763a1d3ba3a3bba8dcebff-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU5Nzc2MjtBUzo1ODI2NTQ4NDA4NTI0ODFAMTUxNTkyNzE0NzkxNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Nanjing_University?enrichId=rgreq-05884b9a1b763a1d3ba3a3bba8dcebff-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU5Nzc2MjtBUzo1ODI2NTQ4NDA4NTI0ODFAMTUxNTkyNzE0NzkxNQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chang-Xu-26?enrichId=rgreq-05884b9a1b763a1d3ba3a3bba8dcebff-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU5Nzc2MjtBUzo1ODI2NTQ4NDA4NTI0ODFAMTUxNTkyNzE0NzkxNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiaoxing-Ma-2?enrichId=rgreq-05884b9a1b763a1d3ba3a3bba8dcebff-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU5Nzc2MjtBUzo1ODI2NTQ4NDA4NTI0ODFAMTUxNTkyNzE0NzkxNQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiaoxing-Ma-2?enrichId=rgreq-05884b9a1b763a1d3ba3a3bba8dcebff-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU5Nzc2MjtBUzo1ODI2NTQ4NDA4NTI0ODFAMTUxNTkyNzE0NzkxNQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Nanjing_University?enrichId=rgreq-05884b9a1b763a1d3ba3a3bba8dcebff-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU5Nzc2MjtBUzo1ODI2NTQ4NDA4NTI0ODFAMTUxNTkyNzE0NzkxNQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Xiaoxing-Ma-2?enrichId=rgreq-05884b9a1b763a1d3ba3a3bba8dcebff-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU5Nzc2MjtBUzo1ODI2NTQ4NDA4NTI0ODFAMTUxNTkyNzE0NzkxNQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Chang-Xu-26?enrichId=rgreq-05884b9a1b763a1d3ba3a3bba8dcebff-XXX&enrichSource=Y292ZXJQYWdlOzMwNzU5Nzc2MjtBUzo1ODI2NTQ4NDA4NTI0ODFAMTUxNTkyNzE0NzkxNQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

E-GreenDroid: Effective Energy Inefficiency Analysis for
Android Applications

Jue Wang§†, Yepang Liu‡, Chang Xu§†, Xiaoxing Ma§†, and Jian Lu§†
†Dept. of Computer Sci. and Tech., Nanjing Univ., Nanjing, China

§State Key Lab for Novel Software Tech., Nanjing Univ., Nanjing, China
‡Dept. of Computer Sci. and Engr., The Hong Kong Univ. of Sci. and Tech., Hong Kong, China

§†juewang591@gmail.com, ‡andrewust@cse.ust.hk, §†{changxu∗, xxm, lj}@nju.edu.cn

ABSTRACT
Energy inefficiency of smartphone apps is one of the im-

portant non-functional issues. It is common, but difficult
to diagnose, and often involves sensor usage. GreenDroid
provides a novel approach to systematically diagnose energy
inefficiency problems in smartphone apps running on An-
droid platforms. It derives an application execution model
(AEM) from Android framework and leverages it to realis-
tically simulate an application’s runtime behaviors. It also
automatically analyzes an application’s sensory data utiliza-
tion, monitors sensor listener and wake lock usage, and re-
ports actionable information to developers.

However, GreenDroid has several limitations. First, other
than Android 2.3, it does not support other newer versions
of Android. Second, GreenDroid doesn’t provide an action-
able and reusable state machine based on AEM. Third, its
implementation and report generation need optimization.
This work focuses on extending GreenDroid’s functionality
of diagnosing energy inefficiency problems in Android apps.
We re-implement GreenDroid on the newest version of Java
Pathfinder(JPF), update and optimize the execution simula-
tion process as well as library modeling. Besides, this work
adds support to new Android features such as Fragment,
and abstracts a separate and reusable state machine out of
AEM. With our evaluation, we demonstrate that the ex-
tended GreenDroid (E-GreenDroid) can analyze those apps
with new Android features while being the same effective as
the original version.

CCS Concepts
•Software and its engineering → Software perfor-

mance; Software testing and debugging;

Keywords
energy inefficiency; smartphone application; sensory data

utilization
∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

Internetware ’16, September 18 2016, Beijing, China
c© 2016 ACM. ISBN 978-1-4503-4829-4/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2993717.2993720

1. INTRODUCTION
In recent years smartphone and its apps develop rapidly.

Users often want their smartphones to stay on as long as pos-
sible with their limited batteries. Meanwhile, many apps
involve sensor usage. These apps use sensors to provide
context-aware services. However, sensor usage can be energy-
consuming if not used cost-effectively [17]. Thus, energy
efficiency has become an important non-functional issue to
consider in smartphone application development.

However, our investigation [9] shows that 33 of 174 popu-
lar Android apps we investigated have received strong com-
plaints from users for energy inefficient problems. Many of
these problems are due to sensor usage. This is because
Android framework let developers manage sensors [2], and
developers often overlook energy inefficiency problems.

Locating energy inefficiency problems is the first step to
fix them, but it’s rather difficult, because the problems may
only appear in a few execution states and it requires labor-
intensive efforts to identify these states. However, according
to our findings in [9], there are two common patterns of
coding that may be the sign of energy inefficient problems.

Sensor listener and wake lock misusage. Every ap-
plication needs to register listeners and specify sensing rate
for each sensor to get information, and the sensors won’t
stop feeding data to their listeners as long as the listeners
haven’t been unregistered. Therefore, forgetting to properly
unregister listeners can cause energy waste. Similarly, wake
lock is acquired by an application when it needs to perform
long-running computation. If the wake lock isn’t properly
released, the phone will stay on for long time after the com-
putation is done and thus it causes energy waste.

Sensory data underutilization. Sensory data is fed
by sensors with cost of energy, and thus should be used
effectively. If the usage of sensory data isn’t worth the cost
of energy, then it’s underutilized and this can be a sign of
energy inefficiency problems.

Based on these patterns, GreenDroid aims to automati-
cally diagnose Android apps and identify the appearances
of these patterns [9]. It simulates runtime behaviors of
an application, and monitors the sensor listeners registra-
tion/ungistration ,wake lock acquirement/release as well as
the sensory data usage. GreenDroid is implemented on top
of Java PathFinder (JPF) [21]. It has two major compo-
nents, Runtime Controller and Sensory Data Utilization An-
alyzer, which simulates runtime behaviors and monitors sen-
sory data usage, respectively.

The approach within GreenDroid proves to be novel and
effective [9], but its implementation requires update and

optimization. The original GreenDroid supports Android
2.3. Now most of the apps use features of newer versions
of Android. Thus the original GreenDroid cannot conduct
effective analysis on these apps, which leads to reduction of
practicality, and this reduces the possibilities to reuse this
implementation in other research areas. The other problem
is that it lacks of an abstracted state machine for runtime
behavior simulation. Our approach derives a model to guide
the simulated execution of Android apps. Original Green-
Droid plants codes involving this model across its program
codes, which makes it difficult to manage, debug, update and
extend. An abstracted state machine of this model can also
be reused for other researches involving Android application
execution. Finally, GreenDroid is designed to generate ac-
tionable report to developers, but it can be better organized
to accent more important information. It lacks of an overall
result of the analysis, which is expected at the beginning
of a report. Moreover, it lacks detailed information, which
may help developers fix detected problems. For instance, it
doesn’t give information about sensory data used during the
execution.

Therefore, we focus on updating and optimizing Green-
Droid’s implementation, as well as proposing an abstracted
and reusable state machine for Android application execu-
tion. We extend GreenDroid to support features of Android
5.0, including new APIs and components. We also propose
a state machine based on GreenDroid’s Application Execu-
tion Model (AEM), which is reusable for any Android appli-
cation analysis. At the same time, we better organize the
report that is generated after analyzing an application, mak-
ing it accent more important information and more readable
to developers. We refer to our extended GreenDroid as E-
GreenDroid.

To evaluate the effectiveness of E-GreenDroid, we use pop-
ular Android apps with features of Android 5.0 as test sub-
jects. We use both versions of GreenDroid to analyze these
apps and compare results. We also use test subjects that
were selected to evaluate GreenDroid [9] to study whether
E-GreenDroid is as effective as the original GreenDroid. The
results show E-GreenDroid can support new features and
maintain effective.

In summary, we make the following contributions in this
paper:

• We extend GreenDroid to support features of Android
5.0 and optimize its implementation, including library
model updating, execution model updating, simulation
optimization, etc. We also better organize the report,
making it more readable to developers.

• We abstract a state machine for Android application
execution from GreenDroid’s AEM. The state machine
can guide application execution and it’s reusable for
any analysis concerning execution of Android apps.

• We evaluate E-GreenDroid with both the popular An-
droid apps with new features and the apps used to
evaluate original GreenDroid. E-GreenDroid success-
fully located real energy inefficiency problems in all the
apps, suggesting its effectiveness.

The rest of this paper is organized as follows. Section 2 in-
troduces the basics of Android apps and gives an motivating
example for both GreenDroid and our extension. Section 3
gives the introduction of the approach within GreenDroid.

User navigates backward or
Fragment is removed/replaced

Fragment is added

onActivityCreated()

onCreate()

onCreateView()

onAttach()

onStart() onResume()

Fragment is active

onPause() onStop()

onDestroyView()

onDestroy()

onDetach()

Fragment is destroyed

The fragment
returns to the
layout from the

back stack

Figure 1: The life cycle of a Fragment

Section 4 presents the extension of GreenDroid. Section 5
evaluates E-GreenDroid and discusses the experimental re-
sults. Section 6 reviews related work and finally Section 7
concludes this paper.

2. BACKGROUND AND MOTIVATION

2.1 Backgroud
Java apps run on Android platform, and these apps con-

tain four types of components:
Activity. An application can comprise multiple Activi-

ties. Only Activities contain graphical user interfaces.
Broadcast receiver. Broadcast receivers receive system-

wide broadcasted messages and respond to them accord-
ingly.

Service. Services conduct long-running tasks in the back-
ground. They are often started by Activities.

Content provider. Content providers provide an inter-
face for querying or modifying shared application data.

These four major components can comprise many other
components. Fragment is one of these components and it’s
used as an example for introduction of our extra feature
support in Section 4.2.1. So we introduce it here.

Fragment. Fragments can be regarded as pieces of an
Activity’s user interface or/and behaviors of it[1]. An Ac-
tivity can have many different Fragments and can change the
current active Fragment at runtime through FragmentMan-
ager. Some of an Activity’s GUI components and execution
logic are contained within its each Fragment. Figure 1 shows
a Fragment’s life cycle. A Fragment’s life cycle always binds
with its belonged Activity.

2.2 Motivating Example
Here, we present a real energy inefficiency problem found

in LocWriter2 [4] that has been confirmed by its developers.
This example is used as motivating example for both Green-
Droid and our extension. Figure 2 gives a simplified version
of the concerned code. It has three main parts, a Fragment
MainFragment, its inner class, a BroadcastReceiver LocRe-

ceiver, and a Service LocService.
From the example we can see that the Fragment binds a

onClickListener to the Button start (Lines 12-19). When
it’s clicked, it starts LocService (Lines 16-18), and Loc-

Service begins a LocationListener loclistener to collect

1 public class MainFragment extends Fragment {
2 public View onCreateView(LayoutInflater
3 inflater, ViewGroup container,
4 Bundle savedInstanceState){
5 View view = inflater.inflate(
6 R.layout.frag_main,container,false);
7 LocReceiver locReceiver = new LocReceiver();
8 IntentFilter filter = new IntentFilter();
9 filter.addAction("android.intent.action.Location");
10 getActivity().registerReceiver(locReceiver, filter);
11 Button start=(Button)view.findViewById(R.id.start);
12 start.setOnClickListener(new View.OnClickListener(){
13 @Override
14 public void onClick (View v) {
15 String text =((Button)v).getText().toString();
16 Intent startIntent = new Intent(
17 getActivity(), LocService.class);
18 getActivity().startService(startIntent);
19 }});
20 return view;
21 }
22 public class LocReceiver extends BroadcastReceiver{
23 @Override
24 public void onReceive (Context context,
25 Intent intent){
26 Location loc = (Location)intent
27 .getExtras().get("location");
28 TextView text =(TextView)getActivity()
29 .findViewById(R.id.text);
30 String lo = Double.toString(loc.getLongitude());
31 String s=lo;text.setText(s);
32 }}}

33 public class LocService extends Service{
34 LocationManager lm;
35 LocationListener loclistener;
36 @Override
37 public int onStartCommand (Intent intent,
38 int flags, int startId){
39 startLocListener();
40 return super.onStartCommand (
41 intent,flags,startId);
42 }
43 public void startLocListener (){
44 Intent intent;
45 lm = (LocationManager)getSystemService(
46 LOCATION_SERVICE);
47 try{
48 loclistener = new LocationListener(){
49 @Override
50 public void onLocationChanged(
51 Location location){
52 intent = new Intent(
53 "android.intent.action.Location");
54 intent.putExtra("location",location);
55 sendBroadcast(intent);
56 }
57 }
58 lm.requestLocationUpdates(
59 LocationManager.GPS_PROVIDER,0,
60 0,loclistener);
61 }catch(SecurityException e){
62 //nothing
63 }
64 }}

Figure 2: Motivating example of LocWriters2’s problematic code

then use the new location data to refresh the map (Line 10).
If the user has enabled location tracking, these data would
also be stored in a database (Line 11). If the Android system
plans to destroy MapActivity (Lines 18–22), GPSService
would be stopped (Line 20), and both the location listener
and broadcast receiver would be unregistered (Lines 21, 51).

If Osmdroid’s users switch their smartphones to another
application, MapActivity would be put to the background
(not destroyed), but GPSService would still keep running for
location sensing. If the location tracking functionality is not
enabled, all location data would be used to refresh an invisi-
ble map. Then, a huge amount of energy would be wasted.

The cause of this energy waste is the delayed unregistra-
tion of the location listener. GPS sensing should be disabled
if location data are only used to render an invisible map. This
resembles a resource leak problem, but existing resource leak
detection techniques [3][25] cannot effectively locate energy
inefficiency problems for two reasons. First, existing tech-
niques rely on explicit calling relationship to conduct pro-
gram analysis. Such relationship is not readily available in an
Android application’s source code. Second, existing tech-
niques can neither distinguish application states nor analyze
sensory data utilization. For example, if users have enabled
the location tracking functionality before putting MapActivi-
ty to the background, then even if the battery is still drained
by continuous GPS sensing, we cannot conclude that the
energy is wasted (location data are stored for future use)
[16]. This motivates us to propose an approach that corre-
lates application states and sensory data utilization to diag-
nosing energy inefficiency problems in Android applications.

III. ENERGY INEFFICIENCY ANALYSIS APPROACH

Our approach contains an Android application execution
model and a tainting-based technique for analyzing sensory
data utilization. We start with an overview.

A. Approach Overview

Our analysis is based on dynamic information flow [11].
Figure 3 shows its high-level abstraction. It takes as input the
Java bytecodes and configuration files of an Android appli-
cation. The Java bytecodes define the application’s program

logic, and can be obtained by compiling its source code or
transforming its Dalvik bytecodes [15]. The configuration
files specify the application’s components, GUI layouts and
so on. The general idea is that we execute an Android appli-
cation in JPF’s Java virtual machine (JVM)2, and systemati-
cally explore its application states. During an execution, our
approach monitors the sensor registration and unregistration
operations, and feeds mock sensory data to the application.
By tracking the propagation of sensory data as the applica-
tion executes, we analyze how sensory data are utilized at
different application states. Our approach compares sensory
data utilization across different states and reports those states
where sensory data are underutilized. Our approach also
checks which sensor listeners have been forgotten to unregis-
ter at the end of an execution, and reports these anomalies.

This high-level abstraction looks intuitive, but some chal-
lenging questions remain unanswered: How can JPF realisti-
cally execute an Android application and enumerate its states?
How to identify program data that depend on sensory data?
How to measure and compare sensory data utilization at dif-
ferent application states? We answer them below.

B. Application Execution Model

An Android application starts with its main activity, and
ends after all its components are destroyed. It keeps handling
received events by calling their handlers according to An-
droid specifications. Each call to an event handler may
change the application’s state by modifying its components’
local or global program data. We thus use the sequence of
event handlers that have been called to represent an applica-
tion state. To simulate real executions, we need to derive an

2 On real devices, an Android application runs in a registered-based Dalvik VM,
while JPF’s JVM is stack-based. This difference does not affect our analysis.

public class MapActivity extends Activity{
private Intent gpsIntent;
private BroadcastReceiver myReceiver;

public void onCreate(){
gpsIntent = new Intent(GPSService.class);
startService(gpsIntent); //start GPSService
myReceiver = new BroadcastReceiver() {

public void onReceive(Intent intent) {
LocData loc = intent.getExtra();
updateMap(loc);
if(trackingModeOn) persistToDatabase(loc);

}
}
//register receiver for handling location change messages
IntentFilter filter = new IntentFilter(“loc_change”);
registerReceiver(myReceiver, filter);

}

public void onDestroy() {
//stop GPSService and unregister broadcast receiver
stopService(gpsIntent);
unregisterReceiver(myReceiver);

}
}

1.
2.
3.

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.

18.
19.
20.
21.
22.
23.

public class GPSService extends Service{
private LocationManager lm;
private LocationListener gpsListener;

public void onCreate(){
//get a reference to system location manager
lm = getSystemService(LOCATION_SERVICE);
gpsListener = new LocationListener() {

public void onLocationChanged(Location loc) {
LocData formattedLoc = processLocation(loc);
//create and send a location change message
Intent intent = new Intent(“loc_change”);
intent.putExtra(“data”, formattedLoc);
sendBroadcast(intent);

}
}

//GPS listener registration
lm.requestLocationUpdates(GPS, 0, 0, gpsListener);

}

public void onDestroy() {
//GPS listener unregistration
lm.removeUpdates(gpsListener);

}
}

31.
32.
33.

34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.

46.
47.
48.

49.
50.
51.
52.
53.

Figure 2. Motivating example from the Osmdroid application (Issue 53)

Java PathFinder

Sensory Data
Utilization Analyzer

Runtime
Controller

Application
Under Analysis

*.class

*.xml

Analysis
Report

• Application state
• Energy inefficiency

Figure 3. Approach overview

4

Figure 3: GreenDroid overview

location sensory data (Lines 45-60). When the data indi-
cates that location changes, loclistener sends a broadcast
message with new sensory data to LocReciever (Lines 52-
55). Then LocReceiver changes the GUI element TextView
text to show this new location (Lines 26-31).

The whole process seems to be reasonable and efficient.
But if LocWriter2’s user clicks the start Button and then
switches to another application, all the GUI elements be-
come invisible. Yet loclistener keeps getting sensory data
and sending it to LocReceiver which will keep updating an
invisible GUI element. Thus, the sensory data is underuti-
lized and this brings the energy inefficiency problem.

GreenDroid aims to automatically detect this kind of en-
ergy inefficiency problems. But as the example shows, most
of the concerned code are within the Fragment, which isn’t
supported by original GreenDroid. Thus, it cannot detect
this problem during analysis. Therefore, we focus on ex-
tending GreenDroid’s ability to conduct effective analysis.

3. INTRODUCTION OF GREENDROID
In this section, we present the introduction of GreenDroid.

We first present the overview of GreenDroid (Section 3.1),
and then give brief introduction to its two major components
(Section 3.2 and Section 3.3).

3.1 Overview of GreenDroid
GreenDroid simulates the execution of an Android appli-

cation, and analyzes utilization of sensory data. It contains
an Android application execution model and a tainting-based
technique for analyzing sensory data utilization. Figure 3

shows the high-level abstraction of GreenDroid [9]. It takes
Java bytecode and necessary configuration files of an appli-
cation as input, and shows a detailed report as output. The
Java bytecode can be obtained by compiling its source code
or transforming its Dalvik bytecode [15]. The configuration
files specify the application’s components, GUI layouts, etc.

The general idea is that we use JPF’s Java virtual machine
(JVM) to execute an Android application in order to system-
atically explore the application’s state space. The Runtime
Controller generates input events and guides the execution
of the application for state space exploration. The Sensory
Data Utilization Analyzer analyzes the application’s utiliza-
tion of sensory data at each explored state. We present how
to guide the execution and how to analyze sensory data uti-
lization below.

3.2 Runtime Controller
An Android application starts when its main Activity is

created, and ends when all of its components are destroyed
[9]. Its logic is specified in a set of loosely coupled event
handlers. An Android application takes different events as
input and calls handlers to handle these events. The han-
dlers are implicitly called at runtime. Each call of a handler
may lead to state change of the application by modifying its
components’ data. Thus, an application state can be rep-
resented by a sequence of event handlers which have been
called. Now the problems are how to generate proper events
as input and how to schedule handler for each event. We
elaborate them below.

To generate proper events, GreenDroid analyzes the con-
figuration files of an application to gain information about
its GUI components and Activities. It specifies a set of
events for each GUI component. Besides, GreenDroid ana-
lyzes the configuration files to specify a set of possible system
events. With all these sets of events, GreenDroid generates
a set of possible events for each Activity. During the exe-
cution, GreenDroid takes one of the possible events of the
application’s current active Activity and uses it as input.

We can generate all possible event sequences for a limited
length by repeating this process1.

To properly schedule handlers at run time, we derive an
Application Execution Model (or AEM) from Android spec-
ifications [9], and leverage it to guide the scheduling. It’s a
collection of temporal rules that are enforced at runtime(unary
temporal connective 2 means ”always”):

AEM := 2
∧
i

Ri

Each temporal rule is expressed in the following form:

Ri := [ψ], [φ]⇒ λ

ψ and λ are both temporal formulae. They are expressed
in linear-time temporal logic, and they refer to what has
happened in an execution and what should be done in the
future, respectively. φ is a propositional logic formula eval-
uating what event is received. In summary, the rule means
that λ should be executed if ψ and φ both hold. The details
of the model can be found in [9].

As such, Runtime Controller can guide the execution of
an Android application to explore its states systematically.

3.3 Sensory Data Utilization Analyzer
During the execution, GreenDroid analyzes the utiliza-

tion of sensory data. Sensory data will be transformed into
different forms and will be consumed at different states. In
order to track its flow and to analyze its utilization, dynamic
tainting is required [8]. There are three phases for the tech-
nique [9]: (1) tainting each sensory datum with an unique
mark, (2) propagating taint marks as the application exe-
cutes, and (3) analyzing sensory data utilization at different
states during the execution.

Tainting the datum is trivial. GreenDroid uses mock sen-
sory data from existing data pool, and the datum can be
modified at will. To propagate taint marks, GreenDroid
does so on bytecode level. It has a collection of rules for each
bytecode instruction about how to propagate the marks [9].
By this, the usage of sensory data can be traced.

To Analyze sensory data utilization, we define the metric
of data utilization coefficient (DUC) by Equation (1) [9]:

DUC(s, d) =
usage(s, d)

Maxs′∈S,d′∈D(usage(s′, d′))
(1)

The DUC of sensory data d at state s is defined as the
ratio between usage of d at s and the maximum usage of
any sensory data at any state [9]. This indicates that low
DUC suggests low utilization of sensory data.

For usage, it’s defined as such:

usage(s, d) =
∑

i∈Instr(s,d)

weight(i, s)× rel(i) (2)

Instr(s, d) is the set of bytecode instructions executed af-
ter sensory data d are fed. Whether the bytecode instruction
i uses the sensory data d is represented by rel(i). And ac-
cording to whether it brings benefits to users like changing
visible GUI elements or saving data to database, the func-
tion weight(i, s) gives the proper weight to instruction i.

As such, GreenDroid is able to analyze the utilization of
sensory data and identify the states that sensory data is
underutilized.
1The length of generated event sequences must be limited,
or there will be infinite number of sequences.

At the same time, Sensory Data Utilization Analyzer mon-
itors registration/unregistration of sensor listeners and ac-
quirement/release of wake locks. If misusage behaviors of
these actions appear, it records and reports them.

4. EXTENSION OF GREENDROID
In this section, we present our work of E-GreenDroid. We

first show the shortcomings of the original GreenDroid’s im-
plementation (Section 4.1), and then present the two parts
of our extension, update and optimization (Section 4.2), fol-
lowed by introduction of our abstracted state machine (Sec-
tion 4.3). And in Section 4.4 we show the better organized
report of E-GreenDroid.

4.1 Motivation
The original GreenDroid concerns Android 2.3. Now An-

droid 4.4 is the most popular platform and Android 6.0 has
come. The original GreenDroid cannot support many fea-
tures that now are being used by many apps, which may lead
to false analysis results. For example, in Section 2.2 the mo-
tivating example has its problematic part of the program
in a Fragment. It was introduced in Android 3.0, and thus
the original GreenDroid cannot conduct effective analysis on
apps using this feature.

Besides, in order to keep the data flow inside the context of
the program to trace sensory data, GreenDroid uses stubs
and mock classes for execution as library classes. These
stubs and mock classes are used as library classes to com-
plete the execution of different components of an application
so that the data flow is kept inside the context of the pro-
gram. As well as original GreenDroid itself, these classes are
designed for Android 2.3, and the library modeling of the
original GreenDroid is neither precise nor complete, which
makes it fail to conduct effective analysis on many apps due
to the imprecise modeling of library or the lack of support of
Android’s new features. Therefore, many modeling classes
need to be updated and many new ones should be added.
The AEM, as mentioned in Section 3.2, needs to be updated
as well.

Finally, some mechanisms of GreenDroid could be opti-
mized to reduce performance overhead and to make Green-
Droid more user-friendly, which will be elaborated below.
our E-GreenDroid supports new features of Android 5.0,
because it is the newest version of Android when we im-
plemented E-GreenDroid and it includes all the features of
earlier versions of Android, including the most popular ver-
sion of the platforms, Android 4.4.

4.2 Updates and Optimizations
Here we describe the update and optimization of Green-

Droid upon newest version of JPF, which is 1.8. Table 1
shows the list of our update and optimization.

4.2.1 Updates
Library modeling update. In order to support new

APIs that come with Android 5.0 and to better model An-
droid libraries, we update GreenDroid’s library modeling.
we update argument format of APIs and their execution pro-
cesses, while maintaining the traceability of sensory data in-
side the APIs. Moreover, many new stubs and mock classes
are implemented in order to support new library APIs, such
as LayoutInflater. Another thing is that since Android 2.3,
Android platform tends to use its own data structures, like

Table 1: List of update and Optimization

Category Content Description

Update
Library modeling update To better model Android library and to support new features of Android 5.0
Extra feature support More sophisticated approaches to support Android 5.0

Optimization
State space reduction Cut off unnecessary states to reduce performance overhead
Heuristic assignment Adopt heuristic methods to assign values to sensory datum

SparseArray which is more suitable for Android platform
than HashMap. In order to simulate the real execution
process of the application, we also add mock classes for
these data structures, modifying their inner structures for
E-GreenDroid to trace possible sensory data while main-
taining their effectiveness.

Extra feature support. Some new features can be sup-
ported with new mock classes, while others require more
sophisticated approaches. We adopt approaches to support
components including Fragment, ToolBar, Spinner, etc. We
take Fragment as an example to elaborate how we handle
these components’ support.

As Section 2.1 says, a Fragment contains part of GUI
elements of an Activity as well as these elements’ related
program logic. A Fragment often includes parts that con-
cern energy inefficiency problems. The original GreenDroid
cannot support Fragment’s features, so it often fails to ef-
fectively analyze apps using Fragment. Therefore we extend
it to support Fragment.

In order to properly schedule the handlers of Fragment,
we add rules similar to those of Activity into AEM. In gen-
eral, the rules concern the current states of a Fragment and
its belonged Activity. Table 2 shows some examples of the
temporal rules for Fragment. The form follows the one men-
tioned in Section 3.2. Symbol � means ”previously”, getAc-
tivity() returns the Activity that owns fra. and isCur-

rentFragment() determines if fra is the current active Frag-
ment. Note that at one time a Activity can only have one
Fragment being active. Which Fragment is active is decided
by the Activity’s program logic.

As mentioned earlier, some GUI components may be con-
tained in a Fragment, so some events will be handled within
the Fragment. Therefore, the set of possible events of cur-
rent Activity has two subsets, the one handled by Activity’s
logic and the one handled by its current active Fragment’s.
Each time the current active Fragment changes, the set of
possible events also changes. Thus, we maintain a event pool
for each Activity and its each Fragment. When an Activity
is currently active, we put events in its event pool and events
in its current active Fragment’s event pool, if any, into the
set of possible events, and take them out if current Activity
or Fragment changes. In this way we assure that an inactive
Fragment’s events, even the Fragment’s belonged Activity is
active, won’t be used as input.

One of the reasons Fragment is used is that it can be re-
placed at runtime. Such actions can involve sensory data
utilization, and they do provide benefits to users. There-
fore our E-GreenDroid supports such actions. We capture
each replacement of Fragment, and switch the current active
Fragment. If a Fragment transaction (e.g., replacement) will
be added to the backstack, i.e., when Back button is clicked
after the transaction it will be undone, we create a new copy
of current Activity and push it onto the task stack. Then
we change the current active Fragment, and update the set
of possible events. If this instruction involves sensory data
utilization, the proper weight will be given. As such, E-

GreenDroid is able to support the features of Fragment, and
can effectively analyze apps using these features.

4.2.2 Optimizations
Besides the update, some optimization are made for Green-

Droid’s execution.
State space reduction. when a listener for a sensor

is registered, the original GreenDroid takes a sensory da-
tum from existing sensory data pool with random accuracy
and values, and feeds it to the application before and after
every state change. But some state changes don’t concern
the sensory data utilization. And in this way the execu-
tion processes two different sensory datums before certain
state changes happen, which leads to performance overhead.
Thus, we optimize the data feeding policy to cut off unneces-
sary sensory data feeding while maintaining the effectiveness
of the analysis.

Heuristic assignment. Rather than pure random, heuris-
tic methods may be adopted to assign values of sensory
data, like assigning values indicating that user keeps going
in the same direction for some specific states. These heuris-
tic methods are optional and can be chosen differently for
different test subjects.

4.3 Reusable State Machine
Here we present the state machine abstracted from AEM.

The original GreenDroid doesn’t form one state machine to
schedule all the event handlers. Instead, it plants partial
codes around the whole program project, making it impos-
sible to reuse and difficult to manage.

The state machine we abstract is a black box. it takes
an Activity and an event as input, and returns the proper
handler as output. For events used for input, we use the
possible events that are generated from Runtime Controller
as mentioned in Section 3.2. The state machine identifies
these events and schedules proper handlers. Since different
Activities can be at different states and thus for the same
event they may need different handlers, the state machine
keeps track of each Activity’s execution trace and its cur-
rent state. When an Activity and an event are sent to the
state machine, it searches the AEM rules to find a rule that
its ψ and φ match the Activity’s execution trace and its
current state as well as the event, respectively. If such rule
exists, the state machine schedules the handler according to
the rule, updates the track of the Activity’s execution and
state, and returns the handler reference as output. Note
that in some cases, the handlers will be called in a row. For
example, an Activity’s onCreate() and onStart() handlers
are often scheduled in a row. For such occasions, we define a
special event, NOT ACT FINISHED EVENT. When a han-
dler that can be called in a row is scheduled, E-GreenDroid
will see if there are any other events that can be used as in-
put. If not, it keeps using NOT ACT FINISHED EVENT
as input event to trigger handlers in a row for the Activity,
until the Activity can receive real events or it’s destroyed.

As such, we abstract a state machine from AEM. Note t-

Table 2: Example temporal rules for Fragment

Rule 1:When should the lifecycle event handler fra.onAttach() be called
[�fra.getActivity().onCreate()], [¬ACT FINISH EV ENT&isCurrentFragment(fra)]→ fra.onAttach()
Rule 2:When should the lifecycle event handler fra.onAttach() be called
[�fra.onAttach()], [¬ACT FINISH EV ENT&isCurrentFragment(fra)]→ fra.onCreate()
Rule 3: When should a lifecycle event handler fra.onPause() be called (# 1)
[�fra.getActivity().onPause()], [¬ACT FINISH EV ENT&isCurrentFragment(fra)]→ fra.onPause()
Rule 4: When should a lifecycle event handler fra.onPause() be called (# 2)
[True], [ACT FRAGMENT REPLACEMENT EV ENT&isCurrentFragment(fra)]→ fra.onPause()

The total numbers of explored states: 9,785
Overall result: Sensory Data Underutilization

DUC Level Percentage Priority Level
0.00 8.30% Severe
0.33 0.31% Severe
0.67 46.46% Mild
1.00 44.94% Low

Figure 4: Example of the overview of the analysis

hat given the Activity and events, the state machine can
be used in any analysis that involves execution of Android
application, thus it’s highly reusable.

4.4 Report Organization
Here we present the better organized report as output of

E-GreenDroid. The original report groups by states that
have energy inefficiency problems. It lacks of an overview
of the analysis and specific ranks of problem priority. More-
over, though it has reports on sensory listener and wake lock
misusage, the original report lacks of sufficient information
for developers to debug. As such, we organize the report to
give an overview of the analysis, as well as providing better
organized information for each detected problem.

The reorganized report first gives the overall result of the
analysis of sensory data utilization. Figure 4 shows an ex-
ample, the overview of the analysis of GPSLogger, an appli-
cation for recording GPS data. The report first presents the
total number of explored states and the overall result. In this
case it’s 9,785 and E-GreenDroid determines that GPSLog-
ger has sensory data underutilization. And then it shows
how many states (given by percentages) have what levels of
DUC. In the example, it shows that 8.30% of the states have
DUC of 0.00, which means that these states don’t effectively
use sensory data at all. Moreover, it shows that 0.31% of the
states have DUC of 0.33, 46.46% of the states have DUC of
0.67, and the rest of the states (44.94%) have DUC of 1.00,
which means these states have fully usage of sensory data.
The report also gives the priority levels of the sensory data
underutilization of all the states. According to our earlier
GreenDroid paper, a DUC less than 0.5 often suggests se-
vere energy inefficiency problems. Therefore, we define that
states with less than 0.50 of DUC have Severe sensory data
underutilization. Similarly, we define states with DUC be-
tween 0.5 and 0.8 have Mild sensory data underutilization
and those with higher than 0.8 of DUC have only Low sen-
sory data underutilization. In this way we define the priority
levels of sensory data underutilization.

After the overview, the report shows the details of prob-
lematic states. Figure 5 gives an example, a report of one
state with Severe sensory data underutilization. It first
shows the DUC of this state along with its priority level, fol-
lowed by the APIs that efficiently/inefficiently use sensory

data. In this case the DUC is 0, and thus no API efficiently
uses the sensory data. At the same time makeText and show

use sensory data inefficiently. At last it shows the full ex-
ecution trace to reach this state, along with all the values
of all the sensory datums fed to the application. Note that
in the report, the problematic states’ details are ordered by
their states’ DUC and priority levels.

At last the report shows the detected sensory listener and
wake lock misusage behaviors. It first shows what kinds of
misusage behaviors it detects, and then gives the full execu-
tion traces with these misusage behaviors.

5. EVALUATION
In this section, we evaluate the effectiveness of our E-

GreenDroid. The effectiveness of original GreenDroid itself
has been demonstrated [9], so we need to evaluate whether
our E-GreenDroid maintain the same effectiveness. Besides,
we evaluate whether we truly extend GreenDroid to support
features of Android 5.0. As such, we aim to answer following
research questions:

• RQ1 (Effectiveness): Does E-GreenDroid hold the
same effectiveness as the original GreenDroid, i.e., can
E-GreenDroid conduct effective analysis on those apps
that the original GreenDroid can effectively analyze?

• RQ2 (Effect of Extension): Does E-GreenDroid
indeed hold effectiveness that the original GreenDroid
doesn’t, i.e., can E-GreenDroid conduct effective anal-
ysis on those apps with features of Android 5.0, which
the original GreenDroid cannot?

5.1 Experimental Setup and Design
In order to get the answer of RQ1, we picked all the An-

droid apps that were used to evaluate the Original Green-
Droid [9][11]. 15 open-source Android apps were used as
test subjects and 13 of them were detected energy ineffi-
ciency problems. We re-complied all the 13 apps on Android
5.0, because Android 5.0 is our target for E-GreenDroid to
support. Among the 13 apps 4 of them can no longer run
normally due to platform differences and thus they were dis-
carded. We picked the rest 9 apps as test subjects for RQ1.
Table 3 gives the information about these apps.

In order to get the answer of RQ2, we picked four popular
apps with new features of Android 5.0 as test subjects. Table
4 gives the information about these apps. GPSLogger-new is
an application reconstructed from GPSLogger, a test subject
for RQ1. the reconstruction doesn’t change its functional
logic, and therefore should have no effect on analysis results.
At the same time, the reconstruction plants new features of
Android 5.0 into the application’s code, moving all of its
GUI elements and behaviors into a Fragment. The other
three apps all use new features of Android 5.0. All the apps

Table 3: RQ1’s application information and analysis results comparison

Application Revisin No. Lines of code Availability Category Results O/E1 Conclusion2

Recycle Locator R-68 3,241 Google Code Travel&Local SLM/SLM same
Ushahidi R-9d0aa75 10,186 GitHub Communication SLM/SLM same

AndTweet V-0.2.4 8,908 Google Code Social WLM/WLM same
BableSink R-d12879a3 1,718 GitHub Library&Demo WLM/WLM same

CWAC-Wakeful R-d984b89 896 GitHub Education WLM/WLM same
Sofia Public

Transport Nav.
R-114 1,443 Google Code Transportation SDU/SDU same

Osmdroid R-750 18,091 Google Code Travel&Local SDU/SDU same
Omidroid R-863 12,427 Google Code Productivity SDU/SDU same

GPSLogger R-15 659 Google Code Travel&Local SDU&SLM/SDU&SLM same
1 Results O means the Qualitative result of the original GreenDroid’s analysis, Results E means the Qualitative

result of the extended GreenDroid’s analysis. We denote SLM as sensor listener misusage, WLM as wake lock
misusage, and SDU as sensory data underutilization

2 Conclusion means whether the two analysis of both versions of GreenDroid give the same Qualitative results.

Sensory Data Utilization State No.2

DUC: 0, Priority: Severe

Efficient data-usage APIs of this state: none

Inefficient data-usage APIs of this state: makeText, show

The execution trace length:12, content:

GPSLoggerActivity@43357@onCreate  @onStart  @onResume

Action: @Click:android.widget.Button Start 

GPSLoggerService@44106@onCreate Register location listener

 GPSLoggerService$MyLocationListener@40991 

GPSLoggerService@44106@onStartCommand 

GPSLoggerService$MyLocationListener@40991

 @LocationChanged with altitude:1.0, latitude:1.0, longitude:1.0 

GPSLoggerActivity@43357 Action: @homeBtn activity switch @onPause

 @onStop 

GPSLoggerService$MyLocationListener@40991

@LocationChanged with altitude:1.0, latitude:2.0, longitude:2.0 

Entering the State

*

ACKNOWLEDGMENTS

[1]

[2] Yu, Y. T. and Lau, M. F. 2006. A comparison of MC/DC,

MUMCUT and several other coverage criteria for logical

decisions. J. Syst. Softw. 79, 5 (May. 2006), 577-590. DOI=

http://dx.doi.org/10.1016/j.jss.2005.05.030.

[3] Spector, A. Z. 1989. Achieving application requirements. In

Distributed Systems, S. Mullender, Ed. ACM Press Frontier

Series. ACM, New York, NY, 19-33. DOI=

http://doi.acm.org/10.1145/90417.90738.

State Order(Ordered by Priority)

DUC And Priority Levels

Efficient/Inefficient APIs Lists

Execution Trace to Reach the State

Figure 5: Example of reports about low DUC states

have energy inefficiency problems that have been confirmed
by their developers.

We conducted all the experiments on a quadrat-core com-
puter with Intel Core i7 CPU and 8GB RAM, running Win-
dows 10. Further more, we define that an execution is a
complete execution process of an Android application for
one sequence of user interaction events. We controlled both
versions of GreenDroid to generate 5,000 different user inter-
action event sequences with maximum length of 6 for each
test subject. Then we conducted analysis with these events
sequences as input. Both versions of GreenDroid use the
same sequences for each test subject. This is sufficient for
GreenDroid to explore considerable application states.

For both the experiments for RQ1 and RQ2, we run both
versions of GreenDroid to conduct analysis on each test sub-
ject, and obtain their reports as output. For RQ1, we com-
pare same test subject’s reports from both versions of Green-
Droid. For sensory data Utilization, we further compare the
DUC levels across the states from both reports. If the re-
ports both show that the same energy inefficiency problems
are detected and the DUC levels across the states from both

reports show essentially the same results2, then we are safe
to say that the effectiveness holds for E-GreenDroid. For
RQ2, we conduct similar experiment. We compare same
test subject’s reports from both versions of GreenDroid and
further compare the DUC levels across the states from both
reports. If E-GreenDroid’s reports show that the energy
inefficiency problems are detected while the original Green-
Droid’s reports fail to do so, then we are safe to say the
extension is effective. The results and discussion of our ex-
periments are shown below.

5.2 RQ1: Effectiveness
Table 3 shows the qualitative results of experiments for

RQ1. For sensor listener misusage and wake lock misusage,
the reports give explicit results. For sensory data utilization,
we define if an application is detected with Severe sensory
data underutilization, then it has sensory data underutiliza-
tion. From the qualitative results, we can see that both
versions of GreenDroid give the same result.

To further demonstrate the effectiveness of our E-GreenDroid,
we compare the detailed information of the reports. For sen-
sor listener misusage and wake lock misusage, we compare
the execution traces of each detected misusage behavior.
Through comparison, for each reported misusage behavior,
the detailed execution traces are essentially the same, sug-
gesting that for misusage behaviors, E-GreenDroid holds the
effectiveness.

For sensory data utilization, we further compare the de-
tailed problematic state information as mentioned in Section
5.1. Figure 6a and 6b shows the DUC level overview for test
subject GPSLogger(R-15) from reports of two versions of
GreenDroid. From the figure we can see that both versions
of GreenDroid report Severe sensory data underutilization,
and thus the qualitative results are both sensory data un-
derutilization. Moreover, the distribution of both charts are
essentially the same. The differences appear due to: (1)up-
date of APIs which leads to changes of each API’s weight,
(2)the change of sensory data feeding policy, and (3)the re-
duction of number of states. These differences don’t affect
the effectiveness of the results.

For further comparison, for each test subject we ana-
lyze and compare two reports’s execution traces for each
problematic state. The analysis and comparison show that

2We use the word essentially here and later because the
results may not be exactly the same due to the update and
extension of GreenDroid as well as the reduction of state
space. But as long as the results carry the same messages,
they are essentially the same and the effectiveness holds.

Table 4: RQ2’s application information and analysis results comparison

Application Revisin No. Lines of code Availability Category Results O/E1 Conclusion2 Cause3

GPSLogger-new - 789 - Travel&Local
SDU&SLM

/NPD
different Fragment

RedBlackTree R-0 483 GitHub Education WLM/WLM same -

LocWriter2 V-0.1.1 1,542 GitHub Travel&Local SDU/NPD different
Fragment
&LMU

ATT V0.9-alpha 52,880 F-Droid Navigation SDU/NPD different
Fragment
&Spinner
&LMU

1 Results O means the Qualitative result of the original GreenDroid’s analysis, Results E means the Qualitative
result of the extended GreenDroid’s analysis. We denote NPD as no problem detected, WLM as wake lock
misusage, and SDU as sensory data underutilization

2 Conclusion means whether the two analysis of both versions of GreenDroid give the same results.
3 Cause shows that which improvement of feature support has made E-GreenDroid capable of detecting energy

problems in these subjects. We use LMU to represent library modeling update, and give specific component
names for extra feature support.

both versions of GreenDroid detect the same energy inef-
ficiency problems for each test subject. For example, for
GPSLogger(R-15), original GreenDroid detects that 15.69%
of states have DUC level of 0.00 while E-GreenDroid detects
that 8.30% of states do so. Through comparison we find
that even though the percentages and numbers of states are
different, the execution traces recorded in both reports sug-
gest the same problems. For instance, both reports of these
states give the following same execution trace among others:
When sensory data’s accuracy is low, the datums will be dis-
carded and no action will be taken, and thus the DUC levels
of these states are all 0.00. Normally low accuracy of sen-
sory data lasts for some time and this leads to energy waste.
The original GreenDroid reports 1,012 states concerning this
problem while E-GreenDroid reports 576 states. This differ-
ence is due to the state space reduction. Therefore, though
the percentages and numbers of states are not exactly the
same in two reports, they are essentially the same.

With these findings, we can answer RQ1 that E-GreenDroid
holds effectiveness.

5.3 RQ2: Effect of Extension
Table 4 presents the qualitative results of experiment for

RQ2. The definition follows Section 5.2. All the four test
subjects have confirmed real energy inefficiency problems.
From Table 3 we can see that the original GreenDroid fails
to detect any energy inefficiency problem for three test sub-
jects, while E-GreenDroid reports problems in all the test
subjects. To show that E-GreenDroid indeed detects real
energy inefficiency problems, we further analyze its reports.
Figure 6c, 6d and 6e shows the overviews of DUC levels for
those test subjects that are reported to have sensory data
underutilization.

GPSLogger-new. As mentioned earlier, GPSLogger-
new is a reconstructed application from GPSLogger(R-15).
The reconstruction doesn’t change its functional logic, and
thus all the energy inefficiency problems remain. From Fig-
ure 6c we can see that it has exactly the same DUC levels
as GPSLogger(R-15), and the execution traces indeed indi-
cate the same problems. GPSLogger-new has all its GUI
elements and their program logic within a Fragment, thus
the original GreenDroid cannot conduct any effective anal-
ysis on it. All of its execution traces only have user events
of physical buttons like Back or Home, and therefore the
analysis doesn’t give any useful information. On the other
hand, E-GreenDroid conducts effective analysis and reports
real energy inefficiency problems.

RedBlackTree. RedBlackTree is an education applica-
tion with red-black tree. E-Greendroid reports that in cer-
tain cases the application requires wake lock and doesn’t re-
leases it when the application terminates, causing the phone
to stay active for long time, which leads to energy waste.
This has been confirmed by its developer. Both versions of
GreenDroid report this problem because the program logic
involving the problem doesn’t concern new features of An-
droid 5.0. However, the detailed information of original
GreenDroid’s report shows that it still cannot analyze pro-
gram logic involving new features of Android 5.0, which may
lead to false negative results. Meanwhile, E-GreenDroid
conducts full analysis covering all the program logic.

LocWriter2. LocWriter2 is an application for record-
ing user’s location and presenting records in the screen. As
Figure 6d shows, E-GreenDroid reports that it has 33.94%
states with DUC level of 0.00, indicating Severe sensory data
underutilization. Further analysis shows that these states
happen when the application starts to record location and
user switches to other apps. Since LocWriter2 doesn’t write
files and only shows records in the screen, the location data
is not effectively used at all. For this problem, the listener
should be unregistered when the application’ GUI turns in-
visible. This has been confirmed by its developer and our
solution has been adopted. LocWriter2’s codes about lo-
cation recording use new APIs of Android 5.0, and some
of its GUI elements, e.g., the Button to start the record-
ing, are within a Fragment. Therefore, original GreenDroid
cannot conduct any analysis. The analysis process throws
exceptions. At the same time, E-GreenDroid’s analysis is
complete and effective.

ATT. ATT (Android Activity Tracker) is a GPS-tracking
application for sports activities. As Figure 6e shows, E-
GreenDroid reports 23.94% of states with DUC level of 0.43,
indicating Severe sensory data underutilization. We find
that this also happens when the application starts to record
location and user switches to other apps. Different from
LocWriter2, ATT stores data to Shared Preference, so the
sensory data is used with partial effectiveness. And due to
the different GUI it has, at certain states the DUC drops
below 0.50. This problem is a real energy inefficiency prob-
lem and its developer confirms it in its issue#2 [3]. Be-
sides, ATT uses many APIs that aren’t supported by orig-
inal GreenDroid like Spinner and its GUI elements are all
added on-the-fly. Thus, original GreenDroid fails to conduct
analysis. At the same time, with all these extra features sup-
ported, E-GreenDroid effectively conducts analysis and rep-

1,690

(15.69%)

140

(1.30%)

3,204

(29.74%)
2,826

(26.23%)
2,913

(27.04%)

0

1,000

2,000

3,000

4,000

0.00 0.13 0.80 0.93 1.00

N
o
.
o

f
A

p
p
.
S

ta
te

s

Location Data Utilization Coefficient
(a) Analysis Result of GPSLogger(R-15) (Original)

812

(8.30%) 30

(0.31%)

4,546 (46.46%) 4,397

(44.94%)

0

1,000

2,000

3,000

4,000

5,000

0.00 0.33 0.67 1.00

N
o

.
o

f
A

p
p

.
S

ta
te

s

Location Data Utilization Coefficient
(b) Analysis Result of GPSLogger(R-15) (Extended)

812

(8.30%) 30

(0.31%)

4,546 (46.46%) 4,397

(44.94%)

0

1,000

2,000

3,000

4,000

5,000

0.00 0.33 0.67 1.00

N
o

.
o

f
A

p
p

.
S

ta
te

s

Location Data Utilization Coefficient
(c) Analysis Result of GPSLogger-new (Extended)

3,217

(33.94%)

6,531 (68.91%)

0

2,000

4,000

6,000

8,000

0.00 1.00

N
o

.
o

f
A

p
p

.
S

ta
te

s

Location Data Utilization Coefficient
(d) Analysis Result of LocWriter2 (Extended)

2,631

(23.97%) 2,355

(21.45%)

1,065

(9.70%)

4,926(44.88%)

0

1,000

2,000

3,000

4,000

5,000

0.43 0.86 0.93 1.00

N
o
.
o

f
A

p
p
.
S

ta
te

s

Location Data Utilization Coefficient
(e) Analysis Result of ATT (Extended)

Figure 6: Data utilization results

orts the real energy inefficiency problems, suggesting its ef-
fectiveness of analyzing apps with features of Android 5.0.

With these analysis, we can answer RQ2 that the exten-
sion is effective.

5.4 Discussion
The approach within GreenDroid is independent of its un-

derlying program analysis framework [9]. The current im-
plementation of E-GreenDroid is still on top of JPF because
it’s the most suitable framework for our implementation and
it’s highly extensive. Using JPF may face the limitation of
coverage since it’s difficult to simulate all the possible in-
terleaving among the user interactions and multiple apps or
services. Still, our approach simulates fair amount of inter-
action sequences and finds real energy inefficiency problems
in real world apps, which indicates the effectiveness of our
approach and implementation. Nevertheless, we will study
the effects of this limitation and overcome it in our future
work. Currently, we are publishing a study using white-
boxing sampling for self-adaptive covering to partially over-
come this limitation.

The extension of adopting to new Android 5.0 is very im-
portant in practice. Besides, it makes E-GreenDroid keep
up with development of Android, providing its approach and
implementation framework the possibilities to be reused in
other related research areas, such as consistence checking
for Android apps. Besides, the extension provides an ab-

stracted, reusable state machine that can be used in any
researches involving Android application execution simula-
tion.

6. RELATED WORK
Our work relates to energy efficiency analysis of smart-

phone apps, Android modeling and JPF extension. We dis-
cuss some representative work below.

Energy efficiency analysis. Recent years researchers
begin to show more and more interest in smartphone ap-
plication’s energy inefficiency problems. Pathak proposed
eProf, a fine-grained energy profiler for smartphone to help
estimate an application’s energy consumption [18]. Oliner
et al. proposed a black-box method, Carat, to detect en-
ergy anomalies for the whole mobile devices [16]. Cuervoy
et al. published a study called MAUI that reduces power
needs of Android apps with remote servers [5]. Hasan et al.
created detailed profiles of the energy consumed by common
operations done on Java collection classes [6]. Zhang et al.
published a study on how user choices can affect energy con-
sumption [23]. Our study published in 2015 described how
to diagnose energy efficiency and performance for mobile in-
ternetware apps [10], while one of our study proposed this
year addresses more wake lock problems [12]. GreenDroid
shares similar goals, but focuses more on energy inefficiency
problems involving sensors by analyzing sensor usage and
sensory data utilization.

Android modeling. Android modeling includes GUI
modeling, execution modeling, etc., and it’s vital for effec-
tive analysis. Yang et al. proposed a static analysis to create
a model of the behaviors of an Android application’s GUI
[22]. Shye et al. conducted a comprehensive analysis of real
smartphone usage, and presented findings on how to model
user activities [20]. Preez et al. proposed a study describ-
ing how a family of complex system simulation models were
developed as a domain related family [19]. Our extension of
GreenDroid involves models of execution, GUI and its be-
haviors, and libraries of Android, but aims to extend the
ability of GreenDroid to support features of Android 5.0.

JPF extension. JPF is a model checking framework for
Java [21]. Mirzaei et al. used JPF to conduct tests of An-
droid apps through symbolic execution [14]. They also pro-
posed a study to automatically generate system input for
Android apps using JPF [13]. Heila et al. published a study
describing the development of JPF-Android, an Android ap-
plication verification tool built on JPF [7]. Our extension
of GreenDroid naturally extends JPF, since GreenDroid is
built on JPF. However, we extend JPF to simulate execu-
tion of Android application and analyze sensory data usage
during the simulation.

7. CONCLUSION
In this paper, we have presented our work of extending

GreenDroid’s ability to diagnose energy inefficiency prob-
lems in Android apps. Our E-GreenDroid can support new
features of Android 5.0 such as Fragment, etc. We update
its stubs and mock classes as Android library. We also
better organize the report to accent important information
and abstract a reusable state machine based on AEM. We
evaluate it using 13 real Android apps in two experiments.
The results show that our extension is effective while our
E-GreenDroid holds its original effectiveness.

In the future, we plan to further extend GreenDroid to
support more features of Android. We also plan to extend
GreenDroid to support concurrency of Android apps. An-
droid apps often have background threads handling long run-
ning tasks. Currently, E-GreenDroid cannot support it and
simply puts all the execution into one thread. We will extend
E-GreenDroid’s ability to support concurrency in future.

8. ACKNOWLEDGEMENT
This work was supported in part by National Basic Re-

search 973 Program (Grant no. 2015CB352202), and Na-
tional Natural Science Foundation (Grant no. 61472174,
91318301, 61321491) of China. The authors would also like
to thank the support of the Collaborative Innovation Center
of Novel Software Technology and Industrialization, Jiangsu,
China.

9. REFERENCES
[1] Android fragment api. https://developer.android.com/

reference/android/app/Fragment.html.

[2] Android sensor management.
http://developer.android.com/reference/android/
hardware/SensorManager.html.

[3] Att issue#2.
https://github.com/bailuk/AAT/issues/2.

[4] Lockwriter2.
https://github.com/ArkBriar/LocWriter2.

[5] E. Cuervoy, A. Balasubramanianz, and D. ki Cho.
Maui: Making smartphones last longer with code
offload. In MobiSys’10, 2010.

[6] S. Hasan, Z. King, M. Hafiz, M. Sayagh, B. Adams,
and A. Hindle. Energy pröıň ↪Ales of java collections
classes. In ICSE’16, 2016.

[7] V. Heila, V. Brink, and W. Visser. Verifying android
applications using java pathfinder. ACM SIGSOFT
Software Engineering Notes, 37(6):1–5, 2012.

[8] V. Kemerlis, G. Portokalidis, K. Jee, and
A. Keromytis. Libdft: Practical dynamic data flow
tracking for commodity systems. In VEE’12, pages
121–132, 2012.

[9] Y. Liu, C. Xu, and S. C. Cheung. Where has my
battery gone? finding sensor related energy black
holes in smartphone applications. In PreCom’13,
pages 2–10. IEEE, 2013.

[10] Y. Liu, C. Xu, and S. C. Cheung. Diagnosing energy
efficiency and performance for mobile internetware
applications. IEEE Software, 32(1):67–75, 2015.

[11] Y. Liu, C. Xu, S. C. Cheung, and J. Lu. Greendroid:
Automated diagnosis of energy inefficiency for
smartphone applications. TSE, 40(9):911–940, 2014.

[12] Y. Liu, C. Xu, S. C. Cheung, and V. Terragni.
Understanding and detecting wake lock misuses for
android applications. In FSE’16, 2016.

[13] N. Mirzaei, H. Bagheri, R. Mahmood, and S. Malek.
Sig-droid: Automated system input generation for
android applications. In ISSRE’15, 2015.

[14] N. Mirzaer, S. Malek, C. PÄČsÄČreanu, N. Esfahani,
and R. Mahmood. Testing android apps through
symbolic execution. ACM SIGSOFT Software
Engineering Notes, 37(6):1–5, 2015.

[15] D. Octeau, S. Jha, and P. McDaniel. Retargeting
android applications to java bytecode. In FSE’12,
2012.

[16] A. Oliner, A. Lyer, I. Stoica, E. Lagerspetz, and
S. Tarkoma. Carat: Collaborative energy diagnosis for
mobile devices. In SenSys’13, 2013.

[17] J. Paek, J. Kim, and R. Govindan. Energy-efficient
rate-adaptive gps-based positioning for smartphones.
In Mobisys’10, pages 299–314. ACM, 2010.

[18] A. Pathak, Y. Hu, and M. Zhang. Where is the energy
spent inside my app? fine grained energy accounting
on smartphones with eprof. In EuroSys’12, pages
29–42, 2012.

[19] V. D. Preez, B. Pearce, K. A. Hawick, and T. H.
McMullen. Software engineering a family of complex
systems simulation model apps on android tablets. In
ICSE’12, 2012.

[20] A. Shye, B. Scholbrock, G. Memik, and P. Dinda.
Characterizing and modeling user activity on
smartphones: summary. In SIGMETRICS’10, 2010.

[21] W. Visser, K. Havelund, G. Brat, and S. Park. Model
checking programs. In ASE’00, pages 3–11, 2000.

[22] S. Yang, H. Zhang, H. Wu, and Y. Wang. Static
window transition graphs for android. In ASE’15,
2015.

[23] C. Zhang, A. Hindle, and D. M. German. The impact
of user chioce on energy consumption. IEEE Software,
31(3):69–75, 2014.

View publication statsView publication stats

https://www.researchgate.net/publication/307597762

